tension zone
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 32)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Nathanael Tilahun

Abstract By adopting a Global Human Rights Sanctions regime, the European Union took a new step in leveraging its power to respond to human rights violations globally. The regime has a general scope, and targets both state and non-state actors. This paper shows that this regime occupies a tension zone between two competing approaches to sanctions: a self-help approach that perceives sanctions as deriving authority from states’ sovereignty and subservient to their foreign policy, and a global governance approach that views sanctions as deriving authority from and bound by the objectives of specific international legal regimes they enforce. The tension between these approaches comes into stark view when constructing the listing criteria and policy objectives of the sanctions, which determine the scope of targets and duration of measures. Whether and how subsequent practice resolves this tension will be determined by certain legislative and interpretive moves by the EU Council and Court.


2021 ◽  
Vol 11 (18) ◽  
pp. 8384
Author(s):  
Chiara Deangeli

Rock failure during tunnel excavation is still a matter of concern. The influence of groundwater is generally taken into account along discontinuities or in “soil-like” formations. However, brittle saturated porous rocks can be subject to undrained conditions during tunnel excavation. Negative effective stresses develop close to the tunnel boundary. This study aims at identifying a limit pore pressure in the rock around the tunnel, which induces failure in the tension zone. A discussion related to the strength parameters in the tension zone, with the Hoek and Brown criterion, is presented. A comparative analysis with different far-field stresses and rock properties indicates that the limit pore pressure decreases with the depth of the tunnel. The limit pore pressure is directly proportional to the uniaxial compressive strength and inversely proportional to the constant m. When the uniaxial compressive strength is close to the state of stress around the tunnel, the role of m reduces. Numerical models set up with FLAC indicate that the tension zone around the tunnel has a thickness of about 1 m. Due to uncertainties in the far-field stresses, hydro-mechanical behavior, and properties of the rock, the tension zone requires a careful investigation, in order to avoid stability problems.


Author(s):  
Abhinay I. Deshmukh

The Bubble Deck technology developed in Europe makes use of high-density polyethylene hollow spheres to replace the ineffective concrete in the centre of the slab, thus decreasing the dead weight and increasing the efficiency of the floor. Concrete is good in compression and hence is more useful in the compression region than in the tension region. The reduction in concrete can be done by replacing the tension zone concrete. Keeping the same idea in mind, an attempt has been made to find out the effectiveness of plastic bubbles by replacing concrete in the tension zone of Ordinary Portland Cement Concrete (OPCC) and Geopolymer Concrete (GPC) beam. Geopolymer Concrete does not form calcium- silicate-hydrates (CSHs) for matrix formation and strength like OPCC but utilizes the polycondensation of silica and alumina precursors to attain structural strength. In this project, M25 concrete mix is used to prepare both OPCC and GPC beams. The trial mix is tested for compressive strength. Flexure test is done is done for 28 days of curing of the beams. This paper presents the results of the experimental investigations carried out to determine and to compare the flexural behaviour of geopolymer concrete (GPC) beams with conventional concrete beams of same grade. The beams were tested under two point monotonic loading. Performance aspects such as load carrying capacity, first crack load, ultimate load, load-deflection behaviour, moment-curvature behaviour, crack width, crack spacing and the modes of failure of both types of beams were studied. The test results showed that the geopolymer concrete exhibits better performance compared to conventional concrete of same grade.


2021 ◽  
Vol 28 (2) ◽  
pp. 93-106
Author(s):  
Zena Yasen ◽  
 Assim Lateef ◽  
Ammar Khazaal

This paper represents an experimental investigation of the layered concrete beam. It contains studying the possibility of using the mortar intervention with layers of glass fibre at the tension zone in a loaded supported concrete beam. To produce a beam with less weight than the beam with all Normal concrete and detecting the effect of this replacement on beam properties. A rectangular beams section (150*200*1000)mm cast with NSC (normal strength concrete) at compression zone and mortar with layers of 3D glass fibre used as a part of the tension zone. The produced beams are layered beams with a lighter weight than the homogenous RC beam. Three deferent levels of the replaced layers (1/3,1/2, and 2/3 of the beam thickness) were studied, all beams were tested under Two point load till failure. The maximum load capacity result shows an apparent lowering in the load capacity of the beam, but as the lightweight layer increases, this lowering in the load capacity becomes less. for (1/3,1/2 and 2/3) of the beam thickness replace with mortar and 3D textile fibre, the lowering percentage of failure load compare with the homogenous reinforced concrete beam are (33.04%, 27.18%, and 19.73%), and the lowering in weight is (5.45%%, 9.07%, and 12..92%) for the same sequence, respectively. Stiffness, ductility and toughness of all beams are tested. An apparent lowering in the stiffness value of the layered beams is recorded with the reference ones. At the same time, it shows an increase in the toughness and toughness value


2021 ◽  
Vol 9 ◽  
Author(s):  
Lijuan Zhang ◽  
Jianjian Zhang ◽  
Guowen Sun ◽  
Zhiyong Liu

Chloride transport in marine concrete under loading is the main cause of its structural deterioration. The traditional numerical simulation assumes that the coefficient of chloride transport is constant, resulting in a large deviation in the prediction results. Based on the porous medium theory, micromechanics theory, and the idea of equivalent homogenization, a multi-scale model of the effective diffusion variable coefficient of chloride transport under bending load was established, which was calculated and programmed by the numerical analysis. The results show that the prediction values of the two-dimensional variable coefficient model are basically consistent with those in the literature, and the prediction accuracy is significantly improved. In addition, the theoretical simulation proves that the bending load affects the porosity of the cement matrix, and then the diffusion coefficient of chloride is changed in concrete. The compression zone can slow down the chloride transport process, while tension zone will accelerate it. The chloride concentration under tension zone is 42.1% higher than that under compression zone when the diffusion time is 200 days and the concrete depth is 15 mm.


2021 ◽  
Author(s):  
Yiding Bao ◽  
Yuchao Li ◽  
Yansong Zhang ◽  
Jianhua Yan ◽  
Xin Zhou

Abstract Tensile cracks in soil slopes, especially developing at the crown, have been increasingly recognized as the signal of slope metastability. In this paper, the role of crown cracks in natural soil slopes was investigated and their effect on stability was studied. A numerical slope model based on the extended finite element method (XFEM) simulating the tensile behavior of soil was used. Before the simulation, a numerical soil tensile test was applied to validate the use of XFEM on tensile behavior of soil. Slope failure was simulated by using strength reduction technique, which can determine the potential slip surface of slope. The simulation results show that the crown crack forms in natural soil slopes when the plastic zone starts penetrating, and therefore it is reasonable to consider the crown crack as the signal of slope metastability. A sensitivity analysis shows that cracks are at the position of the tension zone or very long can obviously affect the slope stability. The stress variation analysis from the initial deformation to slip surface penetration shows that the slope is at a state of compressive stress initially. When plastic zone starts to penetrate, the upper part of slope generates tension zone, but the extent of tension zone is limited until slope failure. This shows why tensile cracks are difficult to form and be stretched in the deep part of the slope. The application of XFEM on slope stability analysis can be used to assess the tensile strength of soil and predict slope failure disaster.


2021 ◽  
Vol 28 (2) ◽  
pp. 54-72
Author(s):  
Abd-al-Salam Al-Hazragi ◽  
Assim Lateef

This article investigates the behaviour of strengthened concrete columns using jacketing ultra-high-performance fiber reinforced concrete (UHPFRC) and carbon fiber-reinforced polymer (CFRP) under uniaxial loaded. The jacket was connected to the column core using shear connectors and (CFRP) fixed as a strip on the tension zone between the column cores and the jacketing. Seven column samples of square cross-section (120 x120) mm at the midsection with overall length of 1250 mm were cast using normal strength concrete (NSC) and having similar longitudinal and transverse reinforcement. The samples were made and tested under axial load at eccentricity equal to 120 mm up to failure. Test parameters were the thickness of jackets (25 and 35) mm and the width of CFRP (0,8, and 12) cm. Column specimens were tested, one of them was reference without any strengthening, and the other specimens divided into two groups (A, and B), and each group included three specimens based on the parameters. Group (A) has UHPFRC jacket thickness 25 mm and CFRP width (0,8, and 12) cm respectively, and group (B) has UHPFRC jacket thickness 35 mm and CFRP width (0,8, and 12) cm respectively. The outcomes of the article show that increasing the thickness of jacket, and width of CFRP lead to increase in the load carrying capacity about (110.5%,168.4%, and 184.2%) for group A, and (157.9%,226.3%, and 263.2%) for group B compared with the reference column due to delay in the appearance of cracks and their distribution. The mid-height lateral displacement of columns was decreased about (66.6%,42.3%, and 35.9%) for group A, and (46.15%,38.46%, and 32.3%) for group B, also the axial deformation of specimens decreased about (71.7%,60.86%, and 55.86%) for group A, and (65.5%,60.5%, and 53.4) for group B compared with the reference column. The ductility of columns that were strengthened with UHPFRC jacket only was increased about (13.67%,19.66%) for thickness(25,35) mm respectively, because of that UHPFRC jacket was contented on steel fibers, and the percentage decrease of ductility was about (5.1%,and 12%) for group (A), (1%,and 9.4%) for group (B) when bonded CFRP in the tension zone with width (8 ,and 12) cm respectively. The results show improvement in the initial and secant stiffness when, increased the thickness of jacket, and width of CFRP because of increase in the size of columns and improvement in the modulus of elasticity. The toughness increase was about (273.97%,301.55%, and 304.5%) for group A, and (453.69%,511.93%, and 524.28%) for group B compared with the reference column because of increase in the size of specimens and delay the appearance of cracks.


2021 ◽  
Vol 51 (1) ◽  
pp. 15-21
Author(s):  
Anatoly A. Telitsyn ◽  
Irina A. Delektorskaia ◽  
Alexandr I. Ryzhov

The article presents an improved technology for joining yarn from natural fibres with elastic filament of yarn using compressed air. The technological scheme of the process is presented. The main working parts of the thread connecting machine are shown – the tangential winding unit of the elastane thread, the additional tension zone, the pneumatic processing zone, the winding zone. The resulting thread is used as a weft in the production of light “stretch” fabrics. The necessity of performing the operation of relaxation and heat fixation of the fabrics is substantiated. The prospects of applying the new technology at small enterprises in the textile industry are shown. Information about the features of the production technology is presented. References are given to works previously published by the authors, as well as by the experience of leading European specialists. The large volume of research performed allows considering this development ready for implementation.


2021 ◽  
Vol 4 (1) ◽  
pp. 46-56
Author(s):  
Çağlar Yalçınkaya

Ultra-high-performance concrete (UHPC) is an innovative cementitious composite containing steel fiber reinforcement that can improve the behavior of structural elements thanks to its high strength and improved ductility properties. The mix design that provides these superior properties of UHPC also makes it a high-cost material. For this reason, the use of UHPC in parts where it contributes more significantly to the performance of the structural elements will lower down the costs and reduce the negative environmental effects caused by high cement content. In this preliminary study, the production of normal concrete (NC)-UHPC reinforced concrete (RC) composite beams by wet-on-wet casting was investigated by producing mini-RC beams. In the production of mini-RC beams, normal mortar (NM) and self-compacting mortar (SCM) mixtures were used to represent an NC. The results showed that in the production of NC-UHPC composite beams, the mixtures should have different rheological properties depending on the order of the layers. Increasing the total thickness of the UHPC layer enhanced the initial and yield stiffnesses as well as the peak loads. UHPC layer with thicknesses of 15 mm in tension zone, 30 mm in tension zone, and 15+15 mm in tension+compression zone led to the load-carrying capacity increment ratios of 20%, 34.6%, and 24.3%, respectively. However, increasing the thickness of the UHPC layer in the composite beams, especially more than 15 mm, reduced the ductility ratio and energy absorption capacity. Optimizing the tensile reinforcement ratio in UHPC layers can overcome the drawbacks in the ductility.


Sign in / Sign up

Export Citation Format

Share Document