Abstract
As a result of COVID-19, the coronavirus associated with SARS-CoV-2 has emerged as the most lethal and infectious pandemic in history. Vaccines alone cannot assure us of a healthy future. As a result, drug production must go hand in hand with vaccine production. The purpose of this study is to evaluate the therapeutic potential of certain chemical constituents of Wheatgrass (Triticum aestivum Linn.,) that may be useful for treatment of COVID19. Seven chemical constituents of Wheatgrass, including Ascobic acid (SWA00A), Rutin (SWA00B), Ferulic acid (SWA00C), quercetin (SWA00D), Luteolin (SWA00E), Apigenin (SWA00F), and Kaempferol (SWA00G), were used for virtual screening. Covid19 viral proteins such as 6lu7-SARS-CoV2 main protease, 6zsl-SARS-CoV-2 helicase, 6w9c-papain-like protease of SARS-CoV-2, and 6m71-RNA-dependent RNA polymerase were selected for study. Drugs used in the treatment of COVID-19 namely Remdesivir, Darunavir, Ralimetinib, Berzosertib, Alpha-interferon, Arabinol, Chloroquine phosphate, Indinavir, Lopinavir, Ritonavir, Plegylated alfa interferon, 2-chloro-2-deoxy-D-glucose are taken as standards. Molecular docking was performed using the PyRx Virtual Screening tool. Among all 7 chemical components, Rutin (SWA00B) had the strongest binding affinity. According to the present study, Rutin present in Wheatgrass shows the highest potential to inhibit SARS-CoV-2 proteins. Wheatgrass has promising anti-SARS-CoV-2 properties, but further research is needed to prove their efficacy in vivo.