microwave radiances
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Yunji Zhang ◽  
Scott B. Sieron ◽  
Yinghui Lu ◽  
Xingchao Chen ◽  
Robert G. Nystrom ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yunji Zhang ◽  
Scott B Sieron ◽  
Yinghui Lu ◽  
Xingchao Chen ◽  
Robert G Nystrom ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yunji Zhang ◽  
Scott B Sieron ◽  
Yinghui Lu ◽  
Xingchao Chen ◽  
Robert G Nystrom ◽  
...  
Keyword(s):  

Author(s):  
Magnus Lindskog ◽  
Adam Dybbroe ◽  
Roger Randriamampianina

AbstractMetCoOp is a Nordic collaboration on operational Numerical Weather Prediction based on a common limited-area km-scale ensemble system. The initial states are produced using a 3-dimensional variational data assimilation scheme utilizing a large amount of observations from conventional in-situ measurements, weather radars, global navigation satellite system, advanced scatterometer data and satellite radiances from various satellite platforms. A version of the forecasting system which is aimed for future operations has been prepared for an enhanced assimilation of microwave radiances. This enhanced data assimilation system will use radiances from the Microwave Humidity Sounder, the Advanced Microwave Sounding Unit-A and the Micro-Wave Humidity Sounder-2 instruments on-board the Metop-C and Fengyun-3 C/D polar orbiting satellites. The implementation process includes channel selection, set-up of an adaptive bias correction procedure, and careful monitoring of data usage and quality control of observations. The benefit of the additional microwave observations in terms of data coverage and impact on analyses, as derived using the degree of freedom of signal approach, is demonstrated. A positive impact on forecast quality is shown, and the effect on the precipitation for a case study is examined. Finally, the role of enhanced data assimilation techniques and adaptions towards nowcasting are discussed.


2021 ◽  
Vol 14 (5) ◽  
pp. 2899-2915
Author(s):  
James Hocking ◽  
Jérôme Vidot ◽  
Pascal Brunel ◽  
Pascale Roquet ◽  
Bruna Silveira ◽  
...  

Abstract. This paper describes a new gas optical depth parameterisation implemented in the most recent release, version 13, of the radiative transfer model RTTOV (Radiative Transfer for TOVS). RTTOV is a fast, one-dimensional radiative transfer model for simulating top-of-atmosphere visible, infrared, and microwave radiances observed by downward-viewing space-borne passive sensors. A key component of the model is the fast parameterisation of absorption by the various gases in the atmosphere. The existing parameterisation in RTTOV has been extended over many years to allow for additional variable gases in RTTOV simulations and to account for solar radiation and better support geostationary sensors by extending the validity to higher zenith angles. However, there are limitations inherent in the current approach which make it difficult to develop it further, for example by adding new variable gases. We describe a new parameterisation that can be applied across the whole spectrum, that allows for a wide range of zenith angles in support of solar radiation and geostationary sensors, and for which it will be easier to add new variable gases in support of user requirements. Comparisons against line-by-line radiative transfer simulations and against observations in the ECMWF operational system yield promising results, suggesting that the new parameterisation generally compares well with the old one in terms of accuracy. Further validation is planned, including testing in operational numerical weather prediction data assimilation systems.


2021 ◽  
Vol 14 (5) ◽  
pp. 3427-3447
Author(s):  
Vasileios Barlakas ◽  
Alan J. Geer ◽  
Patrick Eriksson

Abstract. Numerical weather prediction systems still employ many simplifications when assimilating microwave radiances under all-sky conditions (clear sky, cloudy, and precipitation). For example, the orientation of ice hydrometeors is ignored, along with the polarization that this causes. We present a simple approach for approximating hydrometeor orientation, requiring minor adaption of software and no additional calculation burden. The approach is introduced in the RTTOV (Radiative Transfer for TOVS) forward operator and tested in the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). For the first time within a data assimilation (DA) context, this represents the ice-induced brightness temperature differences between vertical (V) and horizontal (H) polarization – the polarization difference (PD). The discrepancies in PD between observations and simulations decrease by an order of magnitude at 166.5 GHz, with maximum reductions of 10–15 K. The error distributions, which were previously highly skewed and therefore problematic for DA, are now roughly symmetrical. The approach is based on rescaling the extinction in V and H channels, which is quantified by the polarization ratio ρ. Using dual-polarization observations from the Global Precipitation Mission microwave imager (GMI), suitable values for ρ were found to be 1.5 and 1.4 at 89.0 and 166.5 GHz, respectively. The scheme was used for all the conical scanners assimilated at ECMWF, with a broadly neutral impact on the forecast but with an increased physical consistency between instruments that employ different polarizations. This opens the way towards representing hydrometeor orientation for cross-track sounders and at frequencies above 183.0 GHz where the polarization can be even stronger.


2021 ◽  
Vol 13 (5) ◽  
pp. 886
Author(s):  
Yuanbing Wang ◽  
Jieying He ◽  
Yaodeng Chen ◽  
Jinzhong Min

Geostationary meteorological satellites can provide continuous observations of high-impact weather events with a high temporal and spatial resolution. Sounding the atmosphere using a microwave instrument onboard a geostationary satellite has aroused great study interests for years, as it would increase the observational efficiency as well as provide a new perspective in the microwave spectrum to the measuring capability for the current observational system. In this study, the capability of assimilating future geostationary microwave sounder (GEOMS) radiances was developed in the Weather Research and Forecasting (WRF) model’s data assimilation (WRFDA) system. To investigate if these frequently updated and widely distributed microwave radiances would be beneficial for typhoon prediction, observational system simulation experiments (OSSEs) using synthetic microwave radiances were conducted using the mesoscale numerical model WRF and the advanced hybrid ensemble–variational data assimilation method for the Lekima typhoon that occurred in early August 2019. The results show that general positive forecast impacts were achieved in the OSSEs due to the assimilation of GEOMS radiances: errors of analyses and forecasts in terms of wind, humidity, and temperature were both reduced after assimilating GEOMS radiances when verified against ERA-5 data. The track and intensity predictions of Lekima were also improved before 68 h compared to the best track data in this study. In addition, rainfall forecast improvements were also found due to the assimilation impact of GEOMS radiances. In general, microwave observations from geostationary satellites provide the possibility of frequently assimilating wide-ranging microwave information into a regional model in a finer resolution, which can potentially help improve numerical weather prediction (NWP).


2021 ◽  
Author(s):  
James Hocking ◽  
Jérôme Vidot ◽  
Pascal Brunel ◽  
Pascale Roquet ◽  
Bruna Silveira ◽  
...  

Abstract. This paper describes a new gas optical depth parameterisation implemented in the most recent release, version 13, of the radiative transfer model RTTOV (Radiative Transfer for TOVS). RTTOV is a fast, one-dimensional radiative transfer model for simulating top-of-atmosphere visible, infrared and microwave radiances observed by downward-viewing space-borne passive sensors. A key component of the model is the fast parameterisation of absorption by the various gases in the atmosphere. The existing parameterisation in RTTOV has been extended over many years to allow for additional variable gases in RTTOV simulations and to account for solar radiation and better support geostationary sensors by extending the validity to higher zenith angles. However, there are limitations inherent in the current approach which make it difficult to develop it further, for example by adding new variable gases. We describe a new parameterisation that can be applied across the whole spectrum, allows for a wide range of zenith angles in support of solar radiation and geostationary sensors, and for which it will be easier to add new variable gases in support of user requirements. Comparisons against line-by-line radiative transfer simulations, and against observations in the ECMWF operational system yield promising results, suggesting that the new parameterisation generally compares well with the old one in terms of accuracy. Further validation is planned, including testing in operational numerical weather prediction data assimilation systems.


2020 ◽  
Author(s):  
Vasileios Barlakas ◽  
Alan J. Geer ◽  
Patrick Eriksson

Abstract. Numerical weather prediction systems still employ many simplifications when assimilating microwave radiances in all-sky conditions (clear sky, cloudy, and precipitation). For example, the orientation of ice hydrometeors is ignored, along with the polarization that this causes. We present a simple approach for approximating hydrometeor orientation, requiring minor adaption of software and no additional calculation burden. The approach is introduced in the RTTOV (Radiative Transfer for TOVS) forward operator and tested in the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). For the first time within a data assimilation (DA) context, this represents the ice-induced brightness temperature differences between vertical (V) and horizontal (H) polarization, the polarization difference (PD). The discrepancies in PD between observations and simulations decrease by an order of magnitude at 166.5 GHz, with maximum reductions of 10–15 K. The error distributions, which were previously highly skewed and therefore problematic for DA, are now roughly symmetrical. The approach is based on rescaling the extinction in V- and H-channels, which is quantified by the polarization ratio ρ. Using dual polarization observations from Global Precipitation Mission microwave imager (GMI), suitable value for ρ was found to be 1.5 and 1.4 at 89.0 and 166.5 GHz, respectively. The scheme was used for all the conical scanners assimilated at ECMWF, with broadly neutral impact on the forecast, but with an increased physical consistency between instruments that employ different polarizations. This opens the way towards representing hydrometeor orientation for cross-track sounders, and at frequencies above 183.0 GHz where the polarization can be even stronger.


2020 ◽  
Vol 148 (7) ◽  
pp. 2737-2760
Author(s):  
Massimo Bonavita ◽  
Alan J. Geer ◽  
Mats Hamrud

Abstract Recent success in assimilating cloud- and precipitation-affected satellite observations using the “all-sky” approach is thought to have benefitted from variational data assimilation, particularly its ability to handle moderate nonlinearity and non-Gaussianity and to extract wind information through the generalized tracer effect. Ensemble assimilation relies on assumptions including linearity and Gaussianity that might cause difficulties when using all-sky observations. Here, all-sky assimilation is evaluated in a global ensemble Kalman filter (EnKF) system of near-operational quality, derived from an operational four-dimensional variational (4D-Var) system. To get EnKF working successfully required a new all-sky observation error model (the most successful approach was to inflate error as a multiple of the ensemble spread) and adjustments to localization. With these improvements, assimilation of eight microwave humidity instruments gave 2%–4% improvement in forecast scores whether using EnKF or 4D-Var. Correlations from the ensemble showed that all-sky observations generated sensitivity to wind, temperature, and humidity. EnKF increments shared many similarities with those in 4D-Var. Hence both 4D-Var and ensemble data assimilation were able to make good use of all-sky observations, including the extraction of wind information. In absolute terms the EnKF forecast performance in the troposphere was still worse than that that with 4D-Var, although the gap could be reduced by going from 50 to 100 ensemble members. EnKF errors were larger in the stratosphere, where there are excessive gravity wave increments that are not connected with all-sky assimilation.


Sign in / Sign up

Export Citation Format

Share Document