partial reduction
Recently Published Documents


TOTAL DOCUMENTS

450
(FIVE YEARS 57)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Vol 56 (2) ◽  
pp. 111-121
Author(s):  
Yira D. Tapia-Gallardo ◽  
Miguel A. Del Río-Portilla ◽  
Ceres A. Molina-Cárdenas ◽  
M. del Pilar Sánchez-Saavedra

Diatoms, such as Chaetoceros, grow in a mutualistic relationship with bacteria. However, in some cases, it is necessary to grow them in bacteria-free cultures. To reduce bacterial load, antibiotics are used, and on certain occasions it is necessary to use a mixture with more than one antibiotic. This work aimed to obtain a quick and effective protocol to reduce the bacterial load and evaluate the response of three Chaetoceros species with aquacultural importance. Single and mix antibiotics were used. Microalgal and bacterial growth was measured. The growth parameters for diatoms showed that the significantly highest cell concentration was for C. muelleri (3.15 x106 cells mL-1) and the lowest values to C. calcitrans (2.98 x106 cells mL-1). The significantly highest growth rate was for C. calcitrans (0.77 divisions per day), and the lowest values for Chaetoceros sp. (0.60 divisions per day). The growth parameters for heterotrophic bacteria showed that the significantly highest bacterial load was for Chaetoceros sp. (19.16 x106 CFU (Colony-Forming Units) mL-1) and the lowest values were for C. calcitrans (12.23 x106 CFU mL-1). The growth rate of the heterotrophic bacteria present in Chaetoceros cultures was similar among the three studied species. Streptomycin® and sulfate G41® produced a partial reduction of bacterial load. The most effective treatment for all three species was the use of an antibiotic mix composed of ampicillin® (250 μg mL-1), kanamycin® (200 μg mL-1), neomycin® (50 μg mL-1), and streptomycin® (100 μg mL-1) for three days. The mix prepared with the highest antibiotic concentration produced a reduction of bacteria (100%) for three days; however, it also induced a significant reduction of the growth of the three Chaetoceros species.


2021 ◽  
Vol 4 (2) ◽  
pp. 178-199
Author(s):  
Vadim Romanuke ◽  

A theory of refining pure strategy efficient Nash equilibria in finite noncooperative games under uncertainty is outlined. The theory is based on guaranteeing the corresponding payoffs for the players by using maximultimin, which is an expanded version of maximin. If a product of the players’ maximultimin subsets contains more than one efficient Nash equilibrium, a superoptimality rule is attached wherein minimization is substituted with summation. The superoptimality rule stands like a backup plan, and it is involved if maximultimin fails to produce just a single refined efficient equilibrium (a metaequilibrium). The number of the refinement possible outcomes is 10. There are 3 single-metaequilibrium cases, 3 partial reduction cases, and 4 fail cases. Despite successfulness of refinement drops as the game gets bigger, pessimistic estimation of its part is above 54 % for games with no more than four players.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5459
Author(s):  
Piotr Szcześniak ◽  
Barbara Grzeszczyk ◽  
Bartłomiej Furman

An efficient method for the synthesis of nojirimycin- and pyrrolidine-based iminosugar derivatives has been developed. The strategy is based on the partial reduction in sugar-derived lactams by Schwartz’s reagent and tandem stereoselective nucleophilic addition of cyanide or a silyl enol ether dictated by Woerpel’s or diffusion control models, which affords amino-modified iminosugars, such as ADMDP or higher nojirimycin derivatives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Todd J. Eckroat ◽  
Camillus Greguske ◽  
David W. Hunnicutt

Flavobacterium johnsoniae forms biofilms in low nutrient conditions. Protein secretion and cell motility may have roles in biofilm formation. The F. johnsoniae type IX secretion system (T9SS) is important for both secretion and motility. To determine the roles of each process in biofilm formation, mutants defective in secretion, in motility, or in both processes were tested for their effects on biofilm production using a crystal violet microplate assay. All mutants that lacked both motility and T9SS-mediated secretion failed to produce biofilms. A porV deletion mutant, which was severely defective for secretion, but was competent for motility, also produced negligible biofilm. In contrast, mutants that retained secretion but had defects in gliding formed biofilms. An sprB mutant that is severely but incompletely defective in gliding motility but retains a fully functional T9SS was similar to the wild type in biofilm formation. Mutants with truncations of the gldJ gene that compromise motility but not secretion showed partial reduction in biofilm formation compared to wild type. Unlike the sprB mutant, these gldJ truncation mutants were essentially nonmotile. The results show that a functional T9SS is required for biofilm formation. Gliding motility, while not required for biofilm formation, also appears to contribute to formation of a robust biofilm.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 994
Author(s):  
Bin Zhao ◽  
Guanghui Zhang ◽  
Jingbo Mao ◽  
Yanli Wang ◽  
Hong Yang ◽  
...  

Guaiacol is a typical model compound used to investigate and understand the hydrodeoxygenation behaviour of bio-oils, which is critical to their application as an alternative to fossil resources. While extensive research has been carried out on developing catalysts for guaiacol hydrodeoxygenation, the true active sites in these catalysts are often illusive. This study investigated the effect of Au-loading on the catalytic activity of NiTiO3 for the hydrodeoxygenation of guaiacol. It showed that metallic Ni formed by the partial reduction in NiTiO3 was responsible for its catalytic activity. Au-loading in NiTiO3 effectively reduces the temperature required for the NiTiO3 reduction from 400 °C to 300 °C. Consequently, at an Au-loading of 0.86 wt%, the 0.86 Au/NiTiO3-300 °C catalyst was found to deliver a guaiacol conversion of ~32%, more than 6 times higher than that of the pure NiTiO3-300 °C catalyst.


2021 ◽  
Vol 14 (7) ◽  
pp. e236873
Author(s):  
Pratibha Surathi ◽  
Jessica Sher ◽  
Nadeem Obaydou ◽  
Kathleen Mangunay Pergament

A 64-year-old man from nursing home with a pontine stroke 3 months ago, ventilator-dependent, presented with episodic fever, tachycardia and tachypnoea occurring several times a day. He was evaluated for sepsis and pulmonary embolism and was treated empirically with broad-spectrum antibiotics. But these episodes persisted. Due to the episodic nature and typical symptoms of sympathetic overactivity, in the setting of prior brain injury, paroxysmal sympathetic hyperactivity was considered. His antibiotics were discontinued, and he was treated symptomatically with baclofen and bromocriptine, which resulted in a partial reduction of these episodes.


2021 ◽  
Vol 22 (13) ◽  
pp. 6918
Author(s):  
Mackenzie Moore ◽  
Nandini Avula ◽  
Seokwon Jo ◽  
Megan Beetch ◽  
Emilyn U. Alejandro

Placental dysfunction can lead to fetal growth restriction which is associated with perinatal morbidity and mortality. Fetal growth restriction increases the risk of obesity and diabetes later in life. Placental O-GlcNAc transferase (OGT) has been identified as a marker and a mediator of placental insufficiency in the setting of prenatal stress, however, its role in the fetal programming of metabolism and glucose homeostasis remains unknown. We aim to determine the long-term metabolic outcomes of offspring with a reduction in placental OGT. Mice with a partial reduction and a full knockout of placenta-specific OGT were generated utilizing the Cre-Lox system. Glucose homeostasis and metabolic parameters were assessed on a normal chow and a high-fat diet in both male and female adult offspring. A reduction in placental OGT did not demonstrate differences in the metabolic parameters or glucose homeostasis compared to the controls on a standard chow. The high-fat diet provided a metabolic challenge that revealed a decrease in body weight gain (p = 0.02) and an improved insulin tolerance (p = 0.03) for offspring with a partially reduced placental OGT but not when OGT was fully knocked out. Changes in body weight were not associated with changes in energy homeostasis. Offspring with a partial reduction in placental OGT demonstrated increased hepatic Akt phosphorylation in response to insulin treatment (p = 0.02). A partial reduction in placental OGT was protective from weight gain and insulin intolerance when faced with the metabolic challenge of a high-fat diet. This appears to be, in part, due to increased hepatic insulin signaling. The findings of this study contribute to the greater understanding of fetal metabolic programming and the effect of placental OGT on peripheral insulin sensitivity and provides a target for future investigation and clinical applications.


Author(s):  
Janneth Ruiz ◽  
Antonio Ardila ◽  
Bernardo Rueda ◽  
Jorge Echeverri ◽  
Daniel Quintero ◽  
...  

Abstract In the ferronickel production process, mineral calcination is one of the most energy-intensive stages. In a typical rotary kiln calciner, particulate solids and combustions gases move counter currently, while solids undergo drying, pre-reduction, and partial reduction reactions. The combustion of natural gas provides the thermal energy for drying and reduction reactions. About 80 to 85% of the incoming laterite ore leaves the reactor as calcined ore, while the flue gases entrain part of the solids as dust. This work presents a theoretical analysis contrasted with experimental results to evaluate the partial reduction of laterite ores in two rotary kilns of 185 m and 135 m length. The study focused on the water formed in the process, including a comparative analysis of water consumption by two different solids recovery technologies, a gas scrubber and an electrostatic precipitator. Simulations allowed evaluating the water and greenhouse gas formation in the main streams of the process. Among the tested operation conditions, the moisture content in the pellets, consisting of agglomerated dust, strongly influenced the amount of water released in the process and the energy consumption. Furnace RK-2 needs approximately 56% more energy to evaporate the moisture content in the feedstock. Furthermore, furnace RK-2 released 55.4 m3h−1 of water into the atmosphere, which represented two times the amount released by furnace RK-1. Gas scrubber analysis showed that as the liquid water increased, more H2O in the gases was condensed; however, the destroyed exergy also increased. Electrostatic precipitators appear as an adequate technology for reducing water and energy consumption in the ferronickel industry.


Sign in / Sign up

Export Citation Format

Share Document