fano resonances
Recently Published Documents


TOTAL DOCUMENTS

874
(FIVE YEARS 232)

H-INDEX

66
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Siti Rohimah ◽  
He Tian ◽  
Jinfang Wang ◽  
Jianfeng Chen ◽  
Jina Li ◽  
...  

Abstract A plasmonic structure of metal-insulator-metal (MIM) waveguide consisting of a single baffle waveguide and an r-shaped resonator is designed to produce Fano resonance. The finite element method uses the finite element method to analyze the transmission characteristics and magnetic field distributions of the plasmonic waveguide distributions. The simulation results exhibit two Fano resonances that can be achieved by the interference between a continuum state in the baffle waveguide and a discrete state in the r-shaped resonator. The Fano resonances can be simply tuned by changing geometrical parameters of the plasmonic structure. The value variations of geometrical parameters have different effects on sensitivity. Thus, the sensitivity of the plasmonic structure can achieve 1333 nm/RIU, with a figure of merit of 5876. The results of the designed plasmonic structure offer high sensitivity and nano-scale integration, which are beneficial to refractive index sensors, photonic devices at the chip nano-sensors, and biosensors applications.


2022 ◽  
Author(s):  
Vahid Najjari ◽  
Saeed Mirzanejhad ◽  
Amin Ghadi

Abstract A plasmonic refractive index sensor including a Metal-Insulator-Metal waveguide (MIM) with four teeth is proposed. Transmittance (T), Sensitivity (S) and Figure of Merit (FOM) investigated numerically and analysed via Finite Difference Time Domain method (FDTD). The simulation results show the generation of double Fano resonances in the system that the resonance wavelength and the resonance line-shapes can be adjusted by changing the geometry of the device. By optimizing the structure in the initial configuration, the maximum sensitivity of 1078nm/RIU and FOM of 3.62×105 is achieved. Then change the structure parameters. In this case, the maximum sensitivity and FOM are 1041nm/RIU and 2.94×104 respectively, thus two detection points can be used for the refractive index sensor. Due to proper performance and adjustable Fano resonance points, this structure is significant for fabricating sensitive refractive index sensor and plasmonic bandpass filter.


2022 ◽  
Vol 71 (2) ◽  
pp. 027802-027802
Author(s):  
Yang Qi-Li ◽  
◽  
Zhang Xing-Fang ◽  
Liu Feng-Shou ◽  
Yan Xin ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Javier Marmolejo ◽  
Adriana Canales ◽  
Dag Hanstorp ◽  
Ricardo Méndez-Fragoso

Abstract The constructive interference of light reflecting on the inner surface of a dielectric sphere results in a rich Mie scattering spectrum. Each resonance can be understood through a quantum-mechanical analogy, while the structure of the full spectrum is predicted to be a series of Fano resonances. However, the overlap of all the different modes results in such a complex spectrum that an intuitive understanding of the full, underlying structure is still missing. Here we present a directional Mie spectrum obtained by selecting a particular polarization and direction of the scattering of levitating water droplets. We find a significantly simplified spectrum organized in distinct, consecutive Mie Fano Combs composed of equidistant resonances that smoothly evolve from wide Lorentzians into sharp Fano profiles. We then fully explain all these characteristics by expanding on the quantum-mechanical analogy. This makes it possible to understand Mie spectra intuitively without the need for computational simulations.


Author(s):  
Subhajit Karmakar ◽  
Ravi Varshney ◽  
Dibakar Roy Chowdhury

Abstract Optically thin metasurfaces operating at sub-skin depth thicknesses are intriguing because of its associated low plasmonic losses (compared to optically thick, beyond skin-depth metasurfaces). However, their applicability has been restricted largely because of reduced free space coupling with incident radiations resulting in limited electromagnetic responses. To overcome such limitations, we propose enhancement of effective responses (resonances) in sub-skin depth metasurfaces through incorporation of magneto-transport (Giant Magneto Resistance, GMR) concept. Here, we experimentally demonstrate dynamic magnetic modulation of structurally asymmetric metasurfaces (consisting of superlattice arrangement of thin (~ 10 nm each) magnetic (Ni)/ nonmagnetic (Al) layers) operating at terahertz (THz) domain. With increasing magnetic field (applied from 0 to 30 mT approximately, implies increasing superlattice conductivity), we observe stronger confinement of electromagnetic energy at the resonances (both in dipole and Fano modes). Therefore, this study introduces unique magnetically reconfigurable ability in Fano resonant THz metamaterials, which directly improves its performances operating in the sub-skin depth regime. Our study can be explained by spin-dependent terahertz magneto-transport phenomena in metals and can stimulate the paradigm for on-chip spin-based photonic technology enabling dynamic magnetic control over compact, sub-wavelength, sub-skin depth metadevices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3361
Author(s):  
Haitao Hu ◽  
Xue Lu ◽  
Jianhua Huang ◽  
Kai Chen ◽  
Jun Su ◽  
...  

We theoretically demonstrate an approach to generate the double narrow Fano resonances via diffraction coupling of magnetic plasmon (MP) resonances by embedding 3D metamaterials composed of vertical Au U-shaped split-ring resonators (VSRRs) array into a dielectric substrate. Our strategy offers a homogeneous background allowing strong coupling between the MP resonances of VSRRs and the two surface collective optical modes of a periodic array resulting from Wood anomaly, which leads to two narrow hybridized MP modes from the visible to near-infrared regions. In addition, the interaction effects in the VSRRs with various geometric parameters are also systematically studied. Owing to the narrow hybrid MP mode being highly sensitive to small changes in the surrounding media, the sensitivity and the figure of merit (FoM) of the embedded 3D metamaterials with fabrication feasibility were as high as 590 nm/RIU and 104, respectively, which holds practical applications in label-free biosensing, such as the detection of medical diagnoses and sport doping drugs.


Author(s):  
Alexey Mozharov ◽  
Yury Berdnikov ◽  
Nikita Solomonov ◽  
Kristina Novikova ◽  
Irina Nadoyan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document