mie scattering
Recently Published Documents


TOTAL DOCUMENTS

986
(FIVE YEARS 181)

H-INDEX

52
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Lukas Ohnoutek ◽  
Ji-Young Kim ◽  
Jun Lu ◽  
Ben J. Olohan ◽  
Dora M. Răsădean ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuaibin Chang ◽  
Divya Varadarajan ◽  
Jiarui Yang ◽  
Ichun Anderson Chen ◽  
Sreekanth Kura ◽  
...  

AbstractOptical coherence tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. Here, we built a generalized linear model based on Mie scattering theory that quantitatively links tissue scattering to myelin content and neuron density in the human brain. We report a strong linear relationship between scattering coefficient and the myelin content that is retained across different regions of the brain. Neuronal cell body turns out to be a secondary contribution to the overall scattering. The optical property of OCT provides a label-free solution for quantifying volumetric myelin content and neuron cells in the human brain.


2021 ◽  
Vol 95 (1) ◽  
Author(s):  
Jerzy Krupka ◽  
Bartlomiej Salski ◽  
Adam Pacewicz ◽  
Pawel Kopyt

Abstract This paper presents Mie scattering theory as compared to rigorous electromagnetic theory of free oscillations in magnetic and electric plasmon spheres. It is shown that the maxima of Mie scattering and absorption spectra well correspond to resonance frequencies of plasmon modes occurring in dielectric and magnetic spheres, similarly as it takes place for ordinary dielectric resonator modes. Mie theory is well applicable to determine resonance frequencies and scattering parameters of spherical plasmons. However, this theory cannot be applied to determine intrinsic properties of modes induced in the object by the incident plane wave, like quality factors. On the contrary, rigorous electromagnetic theory of free oscillations allows one to determine the complex resonance frequency of each mode that can occur in a given object, and the corresponding quality factor accounting for various kind of losses, including medium and radiation losses. The advantage of the free oscillations theory, as shown in this paper, is in the determination of the quality factors of modes occurring in magnetic plasmon spheres made of a strongly dispersive magnetic medium. Graphical Abstract


2021 ◽  
Vol 14 (1) ◽  
pp. 118
Author(s):  
Qiaojun Liu ◽  
Andrew Yuksun Cheng ◽  
Jianhua Zhu ◽  
Sauwa Chang ◽  
Kinseng Tam

Vertical profiles of particulates were measured in Macao by using a 355 nm Mie scattering lidar during a dust event. A high energy pulse laser was employed as the light source to detect the extinction coefficient in the atmosphere. The extinction profiles showed layers of high aerosol concentrations in good agreement with both back trajectory analysis and ground-based pollution measurements in Macao, which indicate that this lidar is very useful for monitoring extinction profiles during extreme high aerosol loading and low visibility atmospheric conditions when most low energy lidar system is inefficient. The results evidenced that correlations between PM2.5 and TSP varied with the intensity of dust storm and the PM2.5/PM10 ratio was small during dust episode, which indicated that aerosols were dominated by large particles. Furthermore, results of the dust event showed high aerosol concentrations at altitudes where the wind carried the dusty aerosols from northern China, covering Shanghai and the Taiwan Channel, to the Pearl River Delta Region. This research improved the understanding of the dust properties in Macao.


2021 ◽  
Vol 15 (04) ◽  
Author(s):  
Yuchen Shi ◽  
Yunsheng Dong ◽  
Wenqing Liu ◽  
Tianshu Zhang ◽  
Xuesong Zhao ◽  
...  

2021 ◽  
Author(s):  
Javier Marmolejo ◽  
Adriana Canales ◽  
Dag Hanstorp ◽  
Ricardo Méndez-Fragoso

Abstract The constructive interference of light reflecting on the inner surface of a dielectric sphere results in a rich Mie scattering spectrum. Each resonance can be understood through a quantum-mechanical analogy, while the structure of the full spectrum is predicted to be a series of Fano resonances. However, the overlap of all the different modes results in such a complex spectrum that an intuitive understanding of the full, underlying structure is still missing. Here we present a directional Mie spectrum obtained by selecting a particular polarization and direction of the scattering of levitating water droplets. We find a significantly simplified spectrum organized in distinct, consecutive Mie Fano Combs composed of equidistant resonances that smoothly evolve from wide Lorentzians into sharp Fano profiles. We then fully explain all these characteristics by expanding on the quantum-mechanical analogy. This makes it possible to understand Mie spectra intuitively without the need for computational simulations.


Author(s):  
Masato Takamune ◽  
Shota Sasaki ◽  
Daisei Kondo ◽  
Jun Naoi ◽  
Mitsutaka Kumakura ◽  
...  

Abstract Light scattering by a single superconducting microparticle trapped in a quadrupole magnetic field has been observed. The angular distributions of the scattering light were recored for multiple colors of incident light, and were well reproduced by using the Mie scattering theory with the refractive indices for normal conducting metals. This analysis provides us the radius of the trapped particle.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3339
Author(s):  
Lanxin Ma ◽  
Kaixiang Hu ◽  
Chengchao Wang ◽  
Jia-Yue Yang ◽  
Linhua Liu

Noniridescent and nonfading structural colors generated from metallic and dielectric nanoparticles with extraordinary optical properties hold great promise in applications such as image display, color printing, and information security. Yet, due to the strong wavelength dependence of optical constants and the radiation pattern, it is difficult and time-consuming to design nanoparticles with the desired hue, saturation, and brightness. Herein, we combined the Monte Carlo and Mie scattering simulations and a bidirectional neural network (BNN) to improve the design of gold nanoparticles’ structural colors. The optical simulations provided a dataset including color properties and geometric parameters of gold nanoparticle systems, while the BNN was proposed to accurately predict the structural colors of gold nanoparticle systems and inversely design the geometric parameters for the desired colors. Taking the human chromatic discrimination ability as a criterion, our proposed approach achieved a high accuracy of 99.83% on the predicted colors and 98.5% on the designed geometric parameters. This work provides a general method to accurately and efficiently design the structural colors of nanoparticle systems, which can be exploited in a variety of applications and contribute to the development of advanced optical materials.


2021 ◽  
Author(s):  
Giulia Crotti ◽  
Andrea Schirato ◽  
Remo Proietti-Zaccaria ◽  
Giuseppe Della Valle

Abstract The approximated analytical approach of Quasi-Static Theory (QST) is widely used in modelling the optical response of plasmonic nanoparticles. It is well known that its accuracy is remarkable provided that the particle is much smaller than the wavelength of the interacting radiation and that the field induced inside the structure is approximately uniform. Here, we investigate the limits of QST range of validity for gold nanostructures freestanding in air. First, we compare QST predictions of scattering spectra of nanospheres and cylindrical nanowires of various sizes with the exact results provided by Mie scattering theory. We observe a non-monotonic behaviour of the error of QST as a function of the characteristic length of the nanostructures, revealing a non-trivial scaling of its accuracy with the scatterer size. Second, we study nanowires with elliptical section upon different excitation conditions by performing finite element numerical analysis. Comparing simulation results with QST estimates of the extinction cross-section, we find that QST accuracy is strongly dependent on the excitation conditions, yielding good results even if the field is highly inhomogeneous inside the structure.


2021 ◽  
Vol 14 (11) ◽  
pp. 7381-7404
Author(s):  
Steven G. Howell ◽  
Steffen Freitag ◽  
Amie Dobracki ◽  
Nikolai Smirnow ◽  
Arthur J. Sedlacek III

Abstract. The ultra-high-sensitivity aerosol spectrometer (UHSAS) differs from most other optical particle spectrometers by using a high-power infrared (IR) laser to detect small particles and reduce the sizing ambiguity due to the non-monotonicity of scattering with particle size. During the NASA ORACLES project (ObseRvations of Aerosols above CLouds and their intEractionS) over the southeast Atlantic Ocean, the UHSAS clearly undersized particles in the biomass burning plume extending from southern Africa. Since the horizontal and vertical extent of the plume was vast, the NASA P-3B research aircraft often flew through a fairly uniform biomass burning plume for periods exceeding 30 min, sufficient time to explore the details of the UHSAS response by selecting single particle sizes with a differential mobility analyzer (DMA) and passing them to the UHSAS. This was essentially an in-flight calibration of the UHSAS using the particles of interest. Two modes of responses appeared. Most particles were undersized by moderate amounts, ranging from not at all for 70 nm aerosols to 15 % for 280 nm particles. Mie scattering calculations show that composition-dependent refractive index of the particles cannot explain the pattern. Heating of brown carbon or tarballs in the beam causing evaporation and shrinking of the particles is the most plausible explanation, though mis-sizing due to non-sphericity cannot be ruled out. A small fraction (10 %–30 %) of the particles were undersized by 25 % to 35 %. Those were apparently the particles containing refractory black carbon. Laboratory calibrations confirm that black carbon is drastically undersized by the UHSAS, because particles heat to their vaporization point and shrink. A simple empirical correction equation was implemented that dramatically improves agreement with DMA distributions between 100 and 500 nm. It raised the median particle diameter by 18 nm, from 163 to 181 nm, during the August 2017 deployment and by smaller amounts during deployments with less intense pollution. Calculated scattering from UHSAS size distributions increased by about 130 %, dramatically improving agreement with scattering measured by nephelometers. The correction is only valid in polluted instances; clean marine boundary layer and free troposphere aerosols behaved more like the calibration spheres. We were unable to directly test the correction between 500 and 1000 nm, though aerodynamic particle sizer (APS) data appear to show that the correction is poor at the largest diameters, which is no surprise as the composition of those particles is likely to be quite different than that of the accumulation mode. This adds to the evidence that UHSAS data must be treated cautiously whenever the aerosol may absorb infrared light. Similar corrections may be required whenever brown carbon aerosol is present.


Sign in / Sign up

Export Citation Format

Share Document