Abstract
Background
Urban energy systems are responsible for 75% of the world’s energy consumption and for 70% of the worldwide greenhouse gas emissions. Energy system models are used to optimize, benchmark and compare such energy systems with the help of energy sustainability indicators. We discuss several indicators for their basic suitability and their response to changing boundary conditions, system structures and reference values. The most suitable parameters are applied to four different supply scenarios of a real-world urban energy system.
Results
There is a number of energy sustainability indicators, but not all of them are suitable for the use in urban energy system optimization models. Shortcomings originate from the omission of upstream energy supply chains (secondary energy efficiency), from limited capabilities to compare small energy systems (energy productivity), from excessive accounting expense (regeneration rate), from unsuitable accounting methods (primary energy efficiency), from a questionable impact of some indicators on the overall system sustainability (self-sufficiency), from the lack of detailed information content (share of renewables), and more. On the other hand, indicators of absolute greenhouse gas emissions, energy costs, and final energy demand are well suitable for the use in optimization models. However, each of these indicators only represents partial aspects of energy sustainability; the use of only one indicator in the optimization process increases the risk that other important aspects will deteriorate significantly, eventually leading to suboptimal or even unrealistic scenarios in practice. Therefore, multi-criteria approaches should be used to enable a more holistic optimization and planning of sustainable urban energy systems.
Conclusion
We recommend multi-criteria optimization approaches using the indicators of absolute greenhouse gas emissions, absolute energy costs, and absolute energy demand. For benchmarking and comparison purposes, specific indicators should be used and therefore related to the final energy demand, respectively, the number of inhabitants. Our example scenarios demonstrate modeling strategies to optimize sustainability of urban energy systems.