conditional mutual information
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 45)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Bin Li ◽  
Hanjun Deng

Abstract Generating personalized responses is one of the major challenges in natural human-robot interaction. Current researches in this field mainly focus on generating responses consistent with the robot’s pre-assigned persona, while ignoring the user’s persona. Such responses may be inappropriate or even offensive, which may lead to the bad user experience. Therefore, we propose a Bilateral Personalized Dialogue Generation (BPDG) method for dyadic conversation, which integrates user and robot personas into dialogue generation via designing a dynamic persona-aware fusion method. To bridge the gap between the learning objective function and evaluation metrics, the Conditional Mutual Information Maximum (CMIM) criterion is adopted with contrastive learning to select the proper response from the generated candidates. Moreover, a bilateral persona accuracy metric is designed to measure the degree of bilateral personalization. Experimental results demonstrate that, compared with several state-of-the-art methods, the final results of the proposed method are more personalized and consistent with bilateral personas in terms of both automatic and manual evaluations.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1684
Author(s):  
Ting-Li Chen ◽  
Elizabeth P. Chou ◽  
Hsieh Fushing

Without assuming any functional or distributional structure, we select collections of major factors embedded within response-versus-covariate (Re-Co) dynamics via selection criteria [C1: confirmable] and [C2: irrepaceable], which are based on information theoretic measurements. The two criteria are constructed based on the computing paradigm called Categorical Exploratory Data Analysis (CEDA) and linked to Wiener–Granger causality. All the information theoretical measurements, including conditional mutual information and entropy, are evaluated through the contingency table platform, which primarily rests on the categorical nature within all involved features of any data types: quantitative or qualitative. Our selection task identifies one chief collection, together with several secondary collections of major factors of various orders underlying the targeted Re-Co dynamics. Each selected collection is checked with algorithmically computed reliability against the finite sample phenomenon, and so is each member’s major factor individually. The developments of our selection protocol are illustrated in detail through two experimental examples: a simple one and a complex one. We then apply this protocol on two data sets pertaining to two somewhat related but distinct pitching dynamics of two pitch types: slider and fastball. In particular, we refer to a specific Major League Baseball (MLB) pitcher and we consider data of multiple seasons.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1501
Author(s):  
Camil Băncioiu ◽  
Remus Brad

This article presents a novel and remarkably efficient method of computing the statistical G-test made possible by exploiting a connection with the fundamental elements of information theory: by writing the G statistic as a sum of joint entropy terms, its computation is decomposed into easily reusable partial results with no change in the resulting value. This method greatly improves the efficiency of applications that perform a series of G-tests on permutations of the same features, such as feature selection and causal inference applications because this decomposition allows for an intensive reuse of these partial results. The efficiency of this method is demonstrated by implementing it as part of an experiment involving IPC–MB, an efficient Markov blanket discovery algorithm, applicable both as a feature selection algorithm and as a causal inference method. The results show outstanding efficiency gains for IPC–MB when the G-test is computed with the proposed method, compared to the unoptimized G-test, but also when compared to IPC–MB++, a variant of IPC–MB which is enhanced with an AD–tree, both static and dynamic. Even if this proposed method of computing the G-test is presented here in the context of IPC–MB, it is in fact bound neither to IPC–MB in particular, nor to feature selection or causal inference applications in general, because this method targets the information-theoretic concept that underlies the G-test, namely conditional mutual information. This aspect grants it wide applicability in data sciences.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Alex May

Abstract We prove a theorem showing that the existence of “private” curves in the bulk of AdS implies two regions of the dual CFT share strong correlations. A private curve is a causal curve which avoids the entanglement wedge of a specified boundary region $$ \mathcal{U} $$ U . The implied correlation is measured by the conditional mutual information $$ I\left({\mathcal{V}}_1:\left.{\mathcal{V}}_2\right|\mathcal{U}\right) $$ I V 1 : V 2 U , which is O(1/GN) when a private causal curve exists. The regions $$ {\mathcal{V}}_1 $$ V 1 and $$ {\mathcal{V}}_2 $$ V 2 are specified by the endpoints of the causal curve and the placement of the region $$ \mathcal{U} $$ U . This gives a causal perspective on the conditional mutual information in AdS/CFT, analogous to the causal perspective on the mutual information given by earlier work on the connected wedge theorem. We give an information theoretic argument for our theorem, along with a bulk geometric proof. In the geometric perspective, the theorem follows from the maximin formula and entanglement wedge nesting. In the information theoretic approach, the theorem follows from resource requirements for sending private messages over a public quantum channel.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 974
Author(s):  
Taro Tezuka ◽  
Shizuma Namekawa

Task-nuisance decomposition describes why the information bottleneck loss I(z;x)−βI(z;y) is a suitable objective for supervised learning. The true category y is predicted for input x using latent variables z. When n is a nuisance independent from y, I(z;n) can be decreased by reducing I(z;x) since the latter upper bounds the former. We extend this framework by demonstrating that conditional mutual information I(z;x|y) provides an alternative upper bound for I(z;n). This bound is applicable even if z is not a sufficient representation of x, that is, I(z;y)≠I(x;y). We used mutual information neural estimation (MINE) to estimate I(z;x|y). Experiments demonstrated that I(z;x|y) is smaller than I(z;x) for layers closer to the input, matching the claim that the former is a tighter bound than the latter. Because of this difference, the information plane differs when I(z;x|y) is used instead of I(z;x).


2021 ◽  
Author(s):  
Arezou Rezazadeh ◽  
Sharu Theresa Jose ◽  
Giuseppe Durisi ◽  
Osvaldo Simeone

Author(s):  
Nihat Ay

AbstractInformation theory provides a fundamental framework for the quantification of information flows through channels, formally Markov kernels. However, quantities such as mutual information and conditional mutual information do not necessarily reflect the causal nature of such flows. We argue that this is often the result of conditioning based on σ-algebras that are not associated with the given channels. We propose a version of the (conditional) mutual information based on families of σ-algebras that are coupled with the underlying channel. This leads to filtrations which allow us to prove a corresponding causal chain rule as a basic requirement within the presented approach.


Sign in / Sign up

Export Citation Format

Share Document