Background
- Low-voltage areas (LVA) are commonly considered surrogate markers for an arrhythmogenic substrate underlying tachyarrhythmias. It remains challenging to define a proper threshold to classify LVA and it is unknown whether unipolar, bipolar and the recently introduced omnipolar voltage mapping techniques are complementary or contradictory in classifying LVAs. Therefore, this study examined similarities and dissimilarities in unipolar, bipolar and omnipolar voltage mapping and explored the relation between various types of voltages and conduction velocity (CV).
Methods
- Intra-operative epicardial mapping (interelectrode distance 2mm, ±1900 sites) was performed during sinus rhythm in 21 patients (48±13 years, 9 male) with atrial volume overload. Cliques of 4 electrodes (2x2 mm) were used to calculate the maximal unipolar (V
uni,max
), bipolar (V
bi,max
) and omnipolar (V
omni,max
) voltages and mean CV. Areas with V
bi,max
or V
omni,max
≤0.5 mV were defined as LVA.
Results
- V
uni,max
was not only larger than V
bi,max
but also larger than V
omni,max
(7.08 [4.22-10.59] mV vs. 5.27 [2.39-9.56] mV and 5.77 [2.58-10.52] mV respectively, P<0.001). In addition, the largest bipolar clique voltage was on average 1.66 (range: 1.0 - 59.0) times larger to the corresponding perpendicular bipolar voltage pair. LVAs identified by a bipolar or omnipolar threshold corresponded to a broad spectrum of unipolar voltages and, even though CV was generally decreased, still high CVs and large unipolar voltages were found in these LVAs.
Conclusions
- In patients with atrial volume overload, there were considerable discrepancies in the different types of LVAs. Additionally, identification of LVAs was hampered by considerable directional differences in bipolar voltages. Even using directional independent omnipolar voltage to identify LVAs, high CVs and large unipolar voltages are present within these areas. Therefore, a combination of low unipolar and low omnipolar voltage may be more indicative of 'true' LVAs.