catalytic rna
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 15)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Dulce Alonso ◽  
Alfonso Mondragón

Ribozymes are folded catalytic RNA molecules that perform important biological functions. Since the discovery of the first RNA with catalytic activity in 1982, a large number of ribozymes have been reported. While most catalytic RNA molecules act alone, some RNA-based catalysts, such as RNase P, the ribosome, and the spliceosome, need protein components to perform their functions in the cell. In the last decades, the structure and mechanism of several ribozymes have been studied in detail. Aside from the ribosome, which catalyzes peptide bond formation during protein synthesis, the majority of known ribozymes carry out mostly phosphoryl transfer reactions, notably trans-esterification or hydrolysis reactions. In this review, we describe the main features of the mechanisms of various types of ribozymes that can function with or without the help of proteins to perform their biological functions.


Author(s):  
Isabell Schencking ◽  
Eva M. Schäfer ◽  
J. H. William Scanlan ◽  
Benjamin M. Wenzel ◽  
Rolf E. Emmerich ◽  
...  

RNase P is an essential enzyme responsible for tRNA 5'-end maturation. In most bacteria, the enzyme is a ribonucleoprotein consisting of a catalytic RNA subunit and a small protein cofactor termed RnpA. Several studies reported small molecule inhibitors directed against bacterial RNase P that were identified by high-throughput screenings. Using the bacterial RNase P enzymes from Thermotoga maritima, Bacillus subtilis and Staphylococcus aureus as model systems, we found that such compounds, including RNPA2000 and derivatives, iriginol hexaacetate and purpurin, induce the formation of insoluble aggregates of RnpA rather than acting as specific inhibitors. In the case of RNPA2000, aggregation was induced by Mg2+ ions. These findings were deduced from solubility analyses by microscopy and HPLC, RnpA-inhibitor co-pulldown experiments, detergent addition and RnpA titrations in enzyme activity assays. Finally, we used a B. subtilis RNase P depletion strain, whose lethal phenotype could be rescued by a protein-only RNase P of plant origin, for inhibition zone analyses on agar plates. These cell-based experiments argued against RNase P-specific inhibition of bacterial growth by RNPA2000. We were also unable to confirm the previously reported non-specific RNase activity of S. aureus RnpA itself. Our results indicate that high-throughput screenings searching for bacterial RNase P inhibitors are prone to the identification of “false positives” that are also termed Pan-assay interference compound s (PAINS).


Author(s):  
Alexandra D Kent ◽  
Cassandra R Burke ◽  
Andrej Lupták
Keyword(s):  

2021 ◽  
Vol 22 (7) ◽  
pp. 3476
Author(s):  
Karin Moelling ◽  
Felix Broecker

Viroids are non-coding circular RNA molecules with rod-like or branched structures. They are often ribozymes, characterized by catalytic RNA. They can perform many basic functions of life and may have played a role in evolution since the beginning of life on Earth. They can cleave, join, replicate, and undergo Darwinian evolution. Furthermore, ribozymes are the essential elements for protein synthesis of cellular organisms as parts of ribosomes. Thus, they must have preceded DNA and proteins during evolution. Here, we discuss the current evidence for viroids or viroid-like RNAs as a likely origin of life on Earth. As such, they may also be considered as models for life on other planets or moons in the solar system as well as on exoplanets.


Science ◽  
2020 ◽  
pp. eabc3753
Author(s):  
Cole Townsend ◽  
Majety N. Leelaram ◽  
Dmitry E. Agafonov ◽  
Olexandr Dybkov ◽  
Cindy L. Will ◽  
...  

Spliceosome activation involves extensive protein and RNA rearrangements that lead to formation of a catalytically-active U2/U6 RNA structure. At present, little is known about the assembly pathway of the latter and the mechanism whereby proteins aid its proper folding. Here we report the cryo-electron microscopy structures of two human pre-Bact complexes at core resolutions of 3.9-4.2 Å. These structures elucidate the order of the numerous protein exchanges that occur during activation, the mutually-exclusive interactions that ensure the correct order of ribonucleoprotein rearrangements needed to form the U2/U6 catalytic RNA, and the stepwise folding pathway of the latter. Structural comparisons with mature Bact complexes reveal the molecular mechanism whereby a conformational change in the scaffold protein PRP8 facilitates final 3D folding of the U2/U6 catalytic RNA.


2020 ◽  
Vol 48 (20) ◽  
pp. 11750-11761
Author(s):  
Donna Matzov ◽  
Masato Taoka ◽  
Yuko Nobe ◽  
Yoshio Yamauchi ◽  
Yehuda Halfon ◽  
...  

Abstract Ribosomal RNA is the central component of the ribosome, mediating its functional and architectural properties. Here, we report the cryo-EM structure of a highly divergent cytoplasmic ribosome from the single-celled eukaryotic alga Euglena gracilis. The Euglena large ribosomal subunit is distinct in that it contains 14 discrete rRNA fragments that are assembled non-covalently into the canonical ribosome structure. The rRNA is substantially enriched in post-transcriptional modifications that are spread far beyond the catalytic RNA core, contributing to the stabilization of this highly fragmented ribosome species. A unique cluster of five adenosine base methylations is found in an expansion segment adjacent to the protein exit tunnel, such that it is positioned for interaction with the nascent peptide. As well as featuring distinctive rRNA expansion segments, the Euglena ribosome contains four novel ribosomal proteins, localized to the ribosome surface, three of which do not have orthologs in other eukaryotes.


2020 ◽  
Vol 130 (3) ◽  
pp. 253-259
Author(s):  
Ryuji Kiyooka ◽  
Junya Akagi ◽  
Kumi Hidaka ◽  
Hiroshi Sugiyama ◽  
Masayuki Endo ◽  
...  
Keyword(s):  

Author(s):  
Charles G. Hoogstraten ◽  
Montserrat Terrazas ◽  
Anna Aviñó ◽  
Neil A. White ◽  
Minako Sumita

2020 ◽  
Author(s):  
Giovanna Costanzo ◽  
Angela Cirigliano ◽  
Samanta Pino ◽  
Alessandra Giorgi ◽  
Ondrej Šedo ◽  
...  

AbstractA cornerstone of molecular evolution leading to the emergence of life on our planet is associated with appearance of the first catalytic RNA molecules. A question remains regarding the nature of the simplest catalytic centers that could mediate the chemistry needed for RNA-catalysis. In the current paper we provide a new example supporting our previously suggested model proposing that transiently formed open loop geometries could serve as temporary catalytic sites in the most ancient short oligonucleotides. In particular, using two independent detection techniques, PAGE and MALDI-ToF analysis, we show that prolonged thermal treatment of a 5’-phosphorylated (GGC)3 sequence at weakly acidic or neutral pH in the presence of tris(hydroxymethyl)aminomethane, produces a species characterized by a (GGC)3G stoichiometry, which is compatible with the cleavage-terminal recombination chemistry suggested in our previous studies. Our new findings are complemented by microsecond-scale molecular dynamics simulations, showing that (GGC)3 dimers readily sample transient potentially catalytic geometries compatible with the experimentally observed terminal recombination chemistry.


Sign in / Sign up

Export Citation Format

Share Document