eukaryotic alga
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 288 (1953) ◽  
pp. 20210940
Author(s):  
Nathan G. Walworth ◽  
Jana Hinners ◽  
Phoebe A. Argyle ◽  
Suzana G. Leles ◽  
Martina A. Doblin ◽  
...  

Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here, we present an approach for integrating multivariate trait data into a predictive model of trait evolution. We investigated the outcome of thousands of possible adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas exposed to high CO 2 . We found that the direction of historical bias (existing trait correlations) influenced both the rate of adaptation and the evolved phenotypes (trait combinations). Critically, we use fitness landscapes derived directly from empirical trait values to capture known evolutionary phenomena. This work demonstrates that ecological models need to represent both changes in traits and changes in the correlation between traits in order to accurately capture phytoplankton evolution and predict future shifts in elemental cycling.


Symbiosis ◽  
2021 ◽  
Author(s):  
Michael Zuykov ◽  
Julia Anderson ◽  
Galina Kolyuchkina ◽  
Liqiang Zhao ◽  
Kotaro Shirai ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Josep Vilarrasa-Blasi ◽  
Friedrich Fauser ◽  
Masayuki Onishi ◽  
Silvia Ramundo ◽  
Weronika Patena ◽  
...  

Photosynthetic organisms are essential for human life, yet most of their genes remain functionally uncharacterized. Single-celled photosynthetic model systems have the potential to accelerate our ability to connect genes to functions. Here, using a barcoded mutant library of the model eukaryotic alga Chlamydomonas reinhardtii, we determined the phenotypes of more than 58,000 mutants under more than 121 different environmental growth conditions and chemical treatments. 78% of genes are represented by at least one mutant that showed a phenotype, providing clues to the functions of thousands of genes. Mutant phenotypic profiles allow us to place known and previously uncharacterized genes into functional pathways such as DNA repair, photosynthesis, the CO2-concentrating mechanism, and ciliogenesis. We illustrate the value of this resource by validating novel phenotypes and gene functions, including the discovery of three novel components of a defense pathway that counteracts actin cytoskeleton inhibitors released by other organisms. The data also inform phenotype discovery in land plants: mutants in Arabidopsis thaliana genes exhibit similar phenotypes to those we observed in their Chlamydomonas homologs. We anticipate that this resource will guide the functional characterization of genes across the tree of life.


2020 ◽  
Vol 48 (20) ◽  
pp. 11750-11761
Author(s):  
Donna Matzov ◽  
Masato Taoka ◽  
Yuko Nobe ◽  
Yoshio Yamauchi ◽  
Yehuda Halfon ◽  
...  

Abstract Ribosomal RNA is the central component of the ribosome, mediating its functional and architectural properties. Here, we report the cryo-EM structure of a highly divergent cytoplasmic ribosome from the single-celled eukaryotic alga Euglena gracilis. The Euglena large ribosomal subunit is distinct in that it contains 14 discrete rRNA fragments that are assembled non-covalently into the canonical ribosome structure. The rRNA is substantially enriched in post-transcriptional modifications that are spread far beyond the catalytic RNA core, contributing to the stabilization of this highly fragmented ribosome species. A unique cluster of five adenosine base methylations is found in an expansion segment adjacent to the protein exit tunnel, such that it is positioned for interaction with the nascent peptide. As well as featuring distinctive rRNA expansion segments, the Euglena ribosome contains four novel ribosomal proteins, localized to the ribosome surface, three of which do not have orthologs in other eukaryotes.


2020 ◽  
Vol 30 (17) ◽  
pp. 3450-3456.e3 ◽  
Author(s):  
Martino E. Malerba ◽  
Giulia Ghedini ◽  
Dustin J. Marshall

2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2094235
Author(s):  
Nairui Zhang ◽  
Kanae Kohama ◽  
Miyuki Miyagawa ◽  
Moe Mansho ◽  
Ryota Sugimoto ◽  
...  

To date, the monohexosylceramides present in the eukaryotic alga Euglena gracilis has not been reported. In this study, we extracted and purified a lipid fraction that eluted similarly to other reported monohexosylceramides. The structural determination of the lipid fraction revealed a monohexosylceramide ( m/ z = 889.5 and a loss of m/ z = 162), corresponding to the formula C54H99O8N having moieties corresponding to a monohexose (C6H12O6), a 9-methyl-4,8-sphingadienine (C19H37O2N), and a nonacosanoic acid with 2 double bonds (C29H54O2). This is the first report of the isolation of monohexosylceramides from E. gracilis and will promote its utilization in functional foods and cosmetics.


2019 ◽  
Vol 142 (2) ◽  
pp. 137-151 ◽  
Author(s):  
Radek Litvín ◽  
David Bína ◽  
Miroslava Herbstová ◽  
Marek Pazderník ◽  
Eva Kotabová ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document