quaternion group
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 25)

H-INDEX

7
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1418
Author(s):  
Serge Lawrencenko ◽  
Abdulkarim M. Magomedov

Using the orbit decomposition, a new enumerative polynomial P(x) is introduced for abstract (simplicial) complexes of a given type, e.g., trees with a fixed number of vertices or triangulations of the torus with a fixed graph. The polynomial has the following three useful properties. (I) The value P(1) is equal to the total number of unlabeled complexes (of a given type). (II) The value of the derivative P′(1) is equal to the total number of nontrivial automorphisms when counted across all unlabeled complexes. (III) The integral of P(x) from 0 to 1 is equal to the total number of vertex-labeled complexes, divided by the order of the acting group. The enumerative polynomial P(x) is demonstrated for trees and then is applied to the triangulations of the torus with the vertex-labeled complete four-partite graph G=K2,2,2,2, in which specific case P(x)=x31. The graph G embeds in the torus as a triangulation, T(G). The automorphism group of G naturally acts on the set of triangulations of the torus with the vertex-labeled graph G. For the first time, by a combination of algebraic and symmetry techniques, all vertex-labeled triangulations of the torus (12 in number) with the graph G are classified intelligently without using computing technology, in a uniform and systematic way. It is helpful to notice that the graph G can be converted to the Cayley graph of the quaternion group Q8 with the three imaginary quaternions i, j, k as generators.


Author(s):  
Serge Lawrencenko ◽  
Abdulkarim Magomedov

Using the orbit decomposition, a new enumerative polynomial P(x) is introduced for abstract (simplicial) complexes of a given type, e.g., trees with a fixed number of vertices or triangulations of the torus with a fixed graph. The polynomial has the following three useful properties. (I) The value P(1) is equal to the total number of unlabeled complexes (of a given type). (II) The value of the derivative P'(1) is equal to the total number of nontrivial automorphisms when counted across all unlabeled complexes. (III) The integral of P(x) from 0 to 1 is equal to the total number of vertex-labeled complexes, divided by the order of the acting group. The enumerative polynomial P(x) is demonstrated for trees and then is applied to the triangulations of the torus with the vertex-labeled complete four-partite graph G = K_{2,2,2,2}, in which specific case P(x) = x^{31}. The graph G embeds in the torus as a triangulation, T(G). The automorphism group of G naturally acts on the set of triangulations of the torus with the vertex-labeled graph G. For the first time, by a combination of algebraic and symmetry techniques, all vertex-labeled triangulations of the torus (twelve in number) with the graph G are classified intelligently without using computing technology, in a uniform and systematic way. It is helpful to notice that the graph G can be converted to the Cayley graph of the quaternion group Q_8 with the three imaginary quaternions i, j, k as generators.


Author(s):  
Serge Lawrencenko ◽  
Abdulkarim M. Magomedov

Using the orbit decomposition, a new enumerative polynomial P(x) is introduced for abstract (simplicial) complexes of a given type, e.g., trees with a fixed number of vertices or triangulations of the torus with a fixed graph. The polynomial has the following useful properties: (I) P(1) is equal to the number of unlabeled complexes (of a given type), (II) the derivative P'(1) is equal to the number of non-trivial automorphisms over all unlabeled complexes, (III) the integral of P(x) from 0 to 1 is equal to the number of vertex-labeled complexes, divided by the order of the acting group. The enumerative polynomial P(x) is demonstrated for trees, and then is applied to triangulations of the torus with the vertex-labeled complete four-partite graph G = K_{2,2,2,2}, in which specific case P(x) = x^{31}. The graph G embeds on the torus as a triangulation, T(G). The automorphism group of G naturally acts on the set of triangulations of the torus with the vertex-labeled graph G. For the first time, by a combination of algebraic and symmetry techniques, all vertex-labeled triangulations of the torus (twelve in number) with the graph G are classified intelligently without using computing technology, in a uniform and systematic way. It is helpful to notice that the graph G can be converted to the Cayley graph of the quaternion group Q_8 with three quaternions, i, j, k, as generators.


Author(s):  
A. Mahmoudifar ◽  
A. Babai

Let [Formula: see text] be a group. The enhanced power graph of [Formula: see text] is a graph with vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] for some [Formula: see text]. Also, a vertex of a graph is called dominating vertex if it is adjacent to every other vertex of the vertex set. Moreover, an enhanced power graph is said to be a dominatable graph if it has a dominating vertex other than the identity element. In an article of 2018, Bera and his coauthor characterized all abelian finite groups and nonabelian finite [Formula: see text]-groups such that their enhanced power graphs are dominatable (see [2]). In addition as an open problem, they suggested characterizing all finite nonabelian groups such that their enhanced power graphs are dominatable. In this paper, we try to answer their question. We prove that the enhanced power graph of finite group [Formula: see text] is dominatable if and only if there is a prime number [Formula: see text] such that [Formula: see text] and the Sylow [Formula: see text]-subgroups of [Formula: see text] are isomorphic to either a cyclic group or a generalized quaternion group.


Author(s):  
Hamideh Hasanzadeh ◽  
Ali Iranmanesh ◽  
Behnam Azizi

For a given element $g$ of a finite group $G$, the probablility that the commutator of randomly choosen pair elements in $G$ equals $g$ is the relative commutativity degree of $g$.  In this paper we are interested in studying the relative commutativity degree of the Dihedral group of order $2n$ and the Quaternion group of order $2^{n}$ for any $n\geq 3$ and we examine the relative commutativity degree of infinite class of the Moufang Loops of Chein type, $M(G,2)$.


Author(s):  
Nurhabibah Nurhabibah ◽  
Abdul Gazir Syarifudin ◽  
I Gede Adhitya Wisnu Wardhana

AbstractThe Coprime graph is a graph from a finite group that is defined based on the order of each element of the group. In this research, we determine the coprime graph of generalized quaternion group Q_(4n) and its properties. The method used is to study literature and analyze by finding patterns based on some examples. The first result of this research is the form of the coprime graph of a generalized quaternion group Q_(4n) when n = 2^k, n an odd prime number, n an odd composite number, and n an even composite number. The next result is that the total of a cycle contained in the coprime graph of a generalized quaternion group Q_(4n) and cycle multiplicity when  is an odd prime number is p-1.Keywords: Coprime graph, generalized quaternion group, order, path AbstrakGraf koprima merupakan graf dari dari suatu grup hingga yang didefiniskan berdasarkan orde dari masing-masing elemen grup tersebut. Pada penelitian ini akan dibahas tentang bentuk graf koprima dari grup generalized quaternion Q_(4n). Metode yang digunakan dalam penelitian ini adalah studi literatur dan melakukan analisis berdasarkan pola yang ditemukan dalam beberapa contoh. Adapun hasil pertama dari penelitian adalah bentuk graf koprima dari grup generalized quaternion Q_(4n) untuk kasus n = 2^k, n bilangan prima ganjil ganjil, n bilangan komposit ganjil dan n bilangan komposit genap. Hasil selanjutnya adalah total sikel pada graf koprima dari grup generalized quaternion dan multiplisitas sikel ketika  bilangan prima ganjil adalah p-1.Kata kunci: Graf koprima, grup generalized quternion, orde


2021 ◽  
pp. 1-10
Author(s):  
Heng Chen ◽  
Guanyu Li ◽  
Yunhao Sun ◽  
Wei Jiang

Capturing the composite embedding representation of a multi-hop relation path is an extremely vital task in knowledge graph completion. Recently, rotation-based relation embedding models have been widely studied to embed composite relations into complex vector space. However, these models make some over-simplified assumptions on the composite relations, resulting the relations to be commutative. To tackle this problem, this paper proposes a novel knowledge graph embedding model, named QuatGE, which can provide sufficient modeling capabilities for complex composite relations. In particular, our method models each relation as a rotation operator in quaternion group-based space. The advantages of our model are twofold: (1) Since the quaternion group is a non-commutative group (i.e., non-Abelian group), the corresponding rotation matrices of composite relations can be non-commutative; (2) The model has a more expressive setting with stronger modeling capabilities, which is flexible to model and infer the complete relation patterns, including: symmetry/anti-symmetry, inversion and commutative/non-commutative composition. Experimental results on four benchmark datasets show that the proposed method outperforms the existing state-of-the-art models for link prediction, especially on composite relations.


Sign in / Sign up

Export Citation Format

Share Document