abstract simplicial complexes
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1418
Author(s):  
Serge Lawrencenko ◽  
Abdulkarim M. Magomedov

Using the orbit decomposition, a new enumerative polynomial P(x) is introduced for abstract (simplicial) complexes of a given type, e.g., trees with a fixed number of vertices or triangulations of the torus with a fixed graph. The polynomial has the following three useful properties. (I) The value P(1) is equal to the total number of unlabeled complexes (of a given type). (II) The value of the derivative P′(1) is equal to the total number of nontrivial automorphisms when counted across all unlabeled complexes. (III) The integral of P(x) from 0 to 1 is equal to the total number of vertex-labeled complexes, divided by the order of the acting group. The enumerative polynomial P(x) is demonstrated for trees and then is applied to the triangulations of the torus with the vertex-labeled complete four-partite graph G=K2,2,2,2, in which specific case P(x)=x31. The graph G embeds in the torus as a triangulation, T(G). The automorphism group of G naturally acts on the set of triangulations of the torus with the vertex-labeled graph G. For the first time, by a combination of algebraic and symmetry techniques, all vertex-labeled triangulations of the torus (12 in number) with the graph G are classified intelligently without using computing technology, in a uniform and systematic way. It is helpful to notice that the graph G can be converted to the Cayley graph of the quaternion group Q8 with the three imaginary quaternions i, j, k as generators.


Author(s):  
Serge Lawrencenko ◽  
Abdulkarim Magomedov

Using the orbit decomposition, a new enumerative polynomial P(x) is introduced for abstract (simplicial) complexes of a given type, e.g., trees with a fixed number of vertices or triangulations of the torus with a fixed graph. The polynomial has the following three useful properties. (I) The value P(1) is equal to the total number of unlabeled complexes (of a given type). (II) The value of the derivative P'(1) is equal to the total number of nontrivial automorphisms when counted across all unlabeled complexes. (III) The integral of P(x) from 0 to 1 is equal to the total number of vertex-labeled complexes, divided by the order of the acting group. The enumerative polynomial P(x) is demonstrated for trees and then is applied to the triangulations of the torus with the vertex-labeled complete four-partite graph G = K_{2,2,2,2}, in which specific case P(x) = x^{31}. The graph G embeds in the torus as a triangulation, T(G). The automorphism group of G naturally acts on the set of triangulations of the torus with the vertex-labeled graph G. For the first time, by a combination of algebraic and symmetry techniques, all vertex-labeled triangulations of the torus (twelve in number) with the graph G are classified intelligently without using computing technology, in a uniform and systematic way. It is helpful to notice that the graph G can be converted to the Cayley graph of the quaternion group Q_8 with the three imaginary quaternions i, j, k as generators.


Author(s):  
Serge Lawrencenko ◽  
Abdulkarim M. Magomedov

Using the orbit decomposition, a new enumerative polynomial P(x) is introduced for abstract (simplicial) complexes of a given type, e.g., trees with a fixed number of vertices or triangulations of the torus with a fixed graph. The polynomial has the following useful properties: (I) P(1) is equal to the number of unlabeled complexes (of a given type), (II) the derivative P'(1) is equal to the number of non-trivial automorphisms over all unlabeled complexes, (III) the integral of P(x) from 0 to 1 is equal to the number of vertex-labeled complexes, divided by the order of the acting group. The enumerative polynomial P(x) is demonstrated for trees, and then is applied to triangulations of the torus with the vertex-labeled complete four-partite graph G = K_{2,2,2,2}, in which specific case P(x) = x^{31}. The graph G embeds on the torus as a triangulation, T(G). The automorphism group of G naturally acts on the set of triangulations of the torus with the vertex-labeled graph G. For the first time, by a combination of algebraic and symmetry techniques, all vertex-labeled triangulations of the torus (twelve in number) with the graph G are classified intelligently without using computing technology, in a uniform and systematic way. It is helpful to notice that the graph G can be converted to the Cayley graph of the quaternion group Q_8 with three quaternions, i, j, k, as generators.


2010 ◽  
Vol 18 (3) ◽  
pp. 185-188 ◽  
Author(s):  
Karol Pąk

The Geometric Interior in Real Linear Spaces We introduce the notions of the geometric interior and the centre of mass for subsets of real linear spaces. We prove a number of theorems concerning these notions which are used in the theory of abstract simplicial complexes.


2010 ◽  
Vol 18 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Karol Pąk

Abstract Simplicial Complexes In this article we define the notion of abstract simplicial complexes and operations on them. We introduce the following basic notions: simplex, face, vertex, degree, skeleton, subdivision and substructure, and prove some of their properties.


Sign in / Sign up

Export Citation Format

Share Document