applied bias voltage
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 399
Author(s):  
Yang Zhang ◽  
Yu Liu ◽  
Xiao-Lan Xue ◽  
Xiao-Lin Zeng ◽  
Jing Wu ◽  
...  

Circularly polarized photocurrent, observed in p-doped bulk GaAs, varies nonlinearly with the applied bias voltage at room temperature. It has been explored that this phenomenon arises from the current-induced spin polarization in GaAs. In addition, we found that the current-induced spin polarization direction of p-doped bulk GaAs grown in the (001) direction lies in the sample plane and is perpendicular to the applied electric field, which is the same as that in GaAs quantum well. This research indicates that circularly polarized photocurrent is a new optical approach to investigate the current-induced spin polarization at room temperature.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1433
Author(s):  
Ali Aldalbahi ◽  
Rafael Velázquez ◽  
Andrew F. Zhou ◽  
Mostafizur Rahaman ◽  
Peter X. Feng

This study presents a fast and effective method to synthesize 2D boron nitride/tungsten nitride (BN–WN) nanocomposites for tunable bandgap structures and devices. A few minutes of synthesis yielded a large quantity of high-quality 2D nanocomposites, with which a simple, low-cost deep UV photo-detector (DUV-PD) was fabricated and tested. The new device was demonstrated to have very good performance. High responsivity up to 1.17 A/W, fast response-time of lower than two milliseconds and highly stable repeatability were obtained. Furthermore, the influences of operating temperature and applied bias voltage on the properties of DUV-PD as well as its band structure shift were investigated.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 656
Author(s):  
Rashed Md. Murad Hasan ◽  
Xichun Luo ◽  
Jining Sun

Non-uniformity and low throughput issues severely limit the application of nanoelectrode lithography for large area nanopatterning. This paper proposes, for the first time, a new rolling nanoelectrode lithography approach to overcome these challenges. A test-bed was developed to realize uniform pressure distribution over the whole contact area between the roller and the silicon specimen, so that the local oxidation process occurred uniformly over a large area of the specimen. In this work, a brass roller wrapped with a fabricated polycarbonate strip was used as a stamp to generate nanopatterns on a silicon surface. The experimental results show that a uniform pattern transfer for a large area can be achieved with this new rolling nanoelectrode lithography approach. The rolling speed and the applied bias voltage were identified as the primary control parameters for oxide growth. Furthermore, the pattern direction showed no significant influence on the oxide process. We therefore demonstrated that nanoelectrode lithography can be scaled up for large-area nanofabrication by incorporating a roller stamp.


2018 ◽  
Vol 27 (11) ◽  
pp. 114005 ◽  
Author(s):  
Lin Dong ◽  
Michael D Grissom ◽  
Tahzib Safwat ◽  
M G Prasad ◽  
Frank T Fisher

Author(s):  
Lin Dong ◽  
Frank T. Fisher

Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, due to the fact that vibration from the environment is typically random and varies with different magnitudes and frequencies, it is a challenge to implement frequency matching in order to maximize the power output of the energy harvester with a wider frequency bandwidth for applications where there is a time-dependent, varying source frequency. Possible solutions of frequency matching include widening the bandwidth of the energy harvesters themselves in order to implement frequency matching and to perform resonance-based tuning approach, the latter of which shows the most promise to implement a frequency matching design. Here three tuning strategies are discussed. First a two-dimensional resonant frequency tuning technique for the cantilever-geometry energy harvesting device which extended previous 1D tuning approaches was developed. This 2D approach could be used in applications where space constraints impact the available design space of the energy harvester. In addition, two novel resonant frequency tuning approaches (tuning via mechanical stretch and tuning via applied bias voltage, respectively) for electroactive polymer (EAP) membrane-based geometry energy harvesters was proposed, such that the resulting changes in membrane tension were used to tune the device for applications targeting variable ambient frequency environments.


2016 ◽  
Vol 30 (25) ◽  
pp. 1650184 ◽  
Author(s):  
Moumita Dey ◽  
Santanu K. Maiti

In the present work, we propose that a one-dimensional quantum heterostructure composed of magnetic and non-magnetic (NM) atomic sites can be utilized as a spin filter for a wide range of applied bias voltage. A simple tight-binding framework is given to describe the conducting junction where the heterostructure is coupled to two semi-infinite one-dimensional NM electrodes. Based on transfer matrix method, all the calculations are performed numerically which describe two-terminal spin-dependent transmission probability along with junction current through the wire. Our detailed analysis may provide fundamental aspects of selective spin transport phenomena in one-dimensional heterostructures at nanoscale level.


2016 ◽  
Vol 38 (5) ◽  
pp. 337-350 ◽  
Author(s):  
J. C. Caicedo ◽  
R. Gonzalez ◽  
H. H. Caicedo ◽  
M. Gholipourmalekabadi ◽  
C. Amaya

Sign in / Sign up

Export Citation Format

Share Document