In the bin-packing problem with minimum color fragmentation (BPPMCF), we are given a fixed number of bins and a collection of items, each associated with a size and a color, and the goal is to avoid color fragmentation by packing items with the same color within as few bins as possible. This problem emerges in areas as diverse as surgical scheduling and group event seating. We present several optimization models for the BPPMCF, including baseline integer programming formulations, alternative integer programming formulations based on two recursive decomposition strategies that utilize decision diagrams, and a branch-and-price algorithm. Using the results from an extensive computational evaluation on synthetic instances, we train a decision tree model that predicts which algorithm should be chosen to solve a given instance of the problem based on a collection of derived features. Our insights are validated through experiments on the aforementioned applications on real-world data. Summary of Contribution: In this paper, we investigate a colored variant of the bin-packing problem. We present and evaluate several exact mixed-integer programming formulations to solve the problem, including models that explore recursive decomposition strategies based on decision diagrams and a set partitioning model that we solve using branch and price. Our results show that the computational performance of the algorithms depends on features of the input data, such as the average number of items per bin. Our algorithms and featured applications suggest that the problem is of practical relevance and that instances of reasonable size can be solved efficiently.