late promoter
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 5)

H-INDEX

39
(FIVE YEARS 1)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kashif Rasheed ◽  
Baldur Sveinbjørnsson ◽  
Ugo Moens

Abstract Background Approximately 15% of human cancers are attributed to viruses. Numerous studies have shown that high-risk human polyomaviruses (HR-HPV) and Merkel cell polyomavirus (MCPyV) are two human tumor viruses associated with anogenetal and oropharyngeal cancers, and with Merkel cell carcinoma, respectively. MCPyV has been found in HR-HPV positive anogenetal and oropharyngeal tumors, suggesting that MCPyV can act as a co-factor in HR-HPV induced oncogenesis. This prompted us to investigate whether the oncoproteins large T-antigen (LT) and small antigen (sT) of MCPyV could affect the transcriptional activity HPV16 and HPV18 and vice versa whether HPV16 and HPV18 E6 and E7 oncoproteins affected the expression of MCPyV LT and sT. Reciprocal stimulation of these viral oncoproteinscould enhance the oncogenic processes triggered by these tumor viruses. Methods Transient co-transfection studies using a luciferase reporter plasmid with the long control region of HPV16 or HPV18, or the early or late promoter of MCPyV and expression plasmids for LT and sT, or E6 and E7, respectively were performed in the HPV-negative cervical cancer cell line C33A, in the keratinocyte cell line HaCaT, and in the oral squamous cell carcinoma cell line HSC-3. Transfections were also performed with deletion mutants of all these promoters and with mutants of all four oncoproteins. Finally, the effect of E6 and E7 on LT and sT expression in the MCPyV-positive Merkel cell carcinoma cell line WaGa and the effect of LT and sT on the expression of E6 and E7 was monitored by Western blotting. Results LT and sT stimulated the transcriptional activity of the HPV16 and HPV18 LCR and v.v. E6 and E7 potentiated the MCPyV early and late promoter in all cell lines. Induction by E6 and E7 was p53- and pRb-independent, and transactivation by LT did not require DNA binding, nuclear localization and HSC70/pRb interaction, whereas sT stimulated the HPV16/18 LCR activity in a PP2A- and DnaJ-independent manner. Conclusions These results indicate that the co-infection of MCPyV may act as a co-factor in the initiation and/or progression of HPV-induced cancers.


2021 ◽  
Vol 22 (11) ◽  
pp. 5890
Author(s):  
Grzegorz M. Cech ◽  
Anna Kloska ◽  
Klaudyna Krause ◽  
Katarzyna Potrykus ◽  
Michael Cashel ◽  
...  

Bacteriophage P1 is among the best described bacterial viruses used in molecular biology. Here, we report that deficiency in the host cell DksA protein, an E. coli global transcription regulator, improves P1 lytic development. Using genetic and microbiological approaches, we investigated several aspects of P1vir biology in an attempt to understand the basis of this phenomenon. We found several minor improvements in phage development in the dksA mutant host, including more efficient adsorption to bacterial cell and phage DNA replication. In addition, gene expression of the main repressor of lysogeny C1, the late promoter activator Lpa, and lysozyme are downregulated in the dksA mutant. We also found nucleotide substitutions located in the phage immunity region immI, which may be responsible for permanent virulence of phage P1vir. We suggest that downregulation of C1 may lead to a less effective repression of lysogeny maintaining genes and that P1vir may be balancing between lysis and lysogeny, although finally it is able to enter the lytic pathway only. The mentioned improvements, such as more efficient replication and more “gentle” cell lysis, while considered minor individually, together may account for the phenomenon of a more efficient P1 phage development in a DksA-deficient host.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242725
Author(s):  
Hsin-hao T. Hsiao ◽  
Gregg V. Crichlow ◽  
James W. Murphy ◽  
Ewa J. Folta-Stogniew ◽  
Elias J. Lolis ◽  
...  

Pre-mRNA splicing is critical for achieving required amounts of a transcript at a given time and for regulating production of encoded protein. A given pre-mRNA may be spliced in many ways, or not at all, giving rise to multiple gene products. Numerous splicing factors are recruited to pre-mRNA splice sites to ensure proper splicing. One such factor, the 60 kDa poly(U)-binding splicing factor (PUF60), is recruited to sites that are not always spliced, but rather function as alternative splice sites. In this study, we characterized the interaction of PUF60 with a splice site from the adenovirus major late promoter (the AdML 3' splice site, AdML3’). We found that the PUF60–AdML3’ dissociation constants are in the micromolar range, with the binding affinity predominantly provided by PUF60’s two central RNA recognition motifs (RRMs). A 1.95 Å crystal structure of the two PUF60 RRMs in complex with AdML3’ revealed a dimeric organization placing two stretches of nucleic acid tracts in opposing directionalities, which can cause looping of nucleic acid and explain how PUF60 affects pre-mRNA geometry to effect splicing. Solution characterization of this complex by light-scattering and UV/Vis spectroscopy suggested a potential 2:1 (PUF602:AdML3’) stoichiometry, consistent with the crystal structure. This work defines the sequence specificity of the alternative splicing factor PUF60 at the pre-mRNA 3’ splice site. Our observations suggest that control of pre-mRNA directionality is important in the early stage of spliceosome assembly, and advance our understanding of the molecular mechanism by which alternative and constitutive splicing factors differentiate among 3’ splice sites.


2020 ◽  
Vol 21 (14) ◽  
pp. 5158
Author(s):  
Martí Farrera-Sal ◽  
Jana de Sostoa ◽  
Estela Nuñez-Manchón ◽  
Rafael Moreno ◽  
Cristina Fillat ◽  
...  

Oncolytic adenoviruses (OAds) present limited efficacy in clinics. The insertion of therapeutic transgenes into OAds genomes, known as “arming OAds”, has been the main strategy to improve their therapeutic potential. Different approaches were published in the decade of the 2000s, but with few comparisons. Most armed OAds have complete or partial E3 deletions, leading to a shorter half-life in vivo. We generated E3+ OAds using two insertion sites, After-fiber and After-E4, and two different splice acceptors linked to the major late promoter, either the Ad5 protein IIIa acceptor (IIIaSA) or the Ad40 long fiber acceptor (40SA). The highest transgene levels were obtained with the After-fiber location and 40SA. However, the set of codons of the transgene affected viral fitness, highlighting the relevance of transgene codon usage when arming OAds using the major late promoter.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 595 ◽  
Author(s):  
Ling Zhang ◽  
David Simpson ◽  
Lynn McMullen ◽  
Michael Gänzle

Shiga-toxin producing Escherichia coli (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded stx genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the stx genes is directly under the control of the late promoter pR’, thus the sequence diversity of the region between Q and stx, here termed the pR’ region, may affect Stx toxin production. Here, we compared the gene structure of the pR’ region and the stx subtypes of nineteen STECs. The sequence alignment and phylogenetic analysis suggested that the pR’ region tends to be more heterogeneous than the promoter itself, even if the prophages harbor the same stx subtype. Furthermore, we established and validated transcriptional fusions of the pR’ region to the DsRed reporter gene using mitomycin C (MMC) induction. Finally, these constructs were transformed into native and non-native strains and examined with flow cytometry. The results showed that induction levels changed when pR’ regions were placed under different regulatory systems. Moreover, not every stx gene could be induced in its native host bacteria. In addition to the functional genes, the diversity of the pR’ region plays an important role in determining the level of toxin induction.


Virology ◽  
2017 ◽  
Vol 507 ◽  
pp. 179-191 ◽  
Author(s):  
William K. Songock ◽  
Matthew L. Scott ◽  
Jason M. Bodily

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Xiaohong Wang ◽  
Haibin Liu ◽  
Hui Ge ◽  
Masahiko Ajiro ◽  
Nishi R. Sharma ◽  
...  

ABSTRACTThe life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P811depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, acis-acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors.IMPORTANCEIt has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P811promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single-stranded oligonucleotides targeting the replication fork on either leading or lagging strands, we showed that viral lagging-strand replication activates the promoter. We also identified a transcriptional repressor element located upstream of the promoter transcription start site which interacts with cellular proteins hnRNP D0B and hnRNP A/B and modulates the late promoter activity. This is the first report on how DNA replication activates a viral late promoter.


Sign in / Sign up

Export Citation Format

Share Document