monogenetic volcanism
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Olga Bergal-Kuvikas ◽  
Ilya Bindeman ◽  
Andrey Chugaev ◽  
Yulia Larionova ◽  
Alexander Perepelov ◽  
...  

Abstract Based on government statistical data ~80% of the local Kamchatkan population (~250 ka people) live in the major cities on the coastal line of Avacha Gulf . It is the main transport seaway to Kamchatka , and and important Asia - North America air transport corridor. The Avacha Gulf is located in the Malko-Petropavlovsk zone of transverse dislocations (MPZ) on the extension of deep transform fault on the boundary between various ly aged slabs. Most of monogenetic cinder cones chaotic distributed in relation to the trench and belong to the long-living rupture zones of MPZ. Some of the monogenetic volcanoes are parasitic cones on the slopes of Koryaksky and Avachinsky stratovolcanoes and related with their magma plumbing systems. We here present new results of the geochemical and isotopic stud ies of monogenetic volcanism in MPZ. Based on whole rock and trace element geochemistry, Sr-Nd-Pb isotopic ratios of monogenetic volcanism, ­­ magmas were shown to sample the enriched mantle source with dominance decompression melting without significant inputs of the slab`s components. Calculations of the P, T conditions suggest magma residence of monogenetic cinder cones on the Moho boundary. That correlates with the geophysical observation of crustal discontinuity under the MPZ. Monogenetic cinder cones have an active magma plumbing system because during the Holocene time were several periods of activations. Presented results show necessary install continuous monitoring of environment changing around the Avacha Gulf and more serious attention from government and science. A more detailed investigation of MPZ will help degrease potential risks of eruptions from monogenetic volcanoes for human and infrastructures.


2021 ◽  
Vol 412 ◽  
pp. 107194
Author(s):  
Natalia Salazar-Muñoz ◽  
Carlos Arturo Ríos de la Ossa ◽  
Hugo Murcia ◽  
Dayana Schonwalder-Ángel ◽  
Luis Alvaro Botero-Gómez ◽  
...  

2021 ◽  
Vol 412 ◽  
pp. 107192
Author(s):  
Patrick Sugden ◽  
Khachatur Meliksetian ◽  
Ivan P. Savov ◽  
Dan Barfod ◽  
Marjorie Wilson ◽  
...  

2021 ◽  
Author(s):  
Carmen del Fresno ◽  
Alicia Felpeto ◽  
Itahiza Domínguez Cerdeña ◽  
Laura García-Cañada ◽  
Stavros Meletlidis ◽  
...  

<p>Monitoring the activity of a volcanic unrest in an archipelago is always a challenging task. Difficulties are even greater if we are also dealing with monogenetic volcanism, without a defined magma chamber, where each unrest can be related to a different magma intrusion, following different ascending paths towards an eruptive vent that can arise both on land or at sea. Moreover, if the repose time between eruptions is long, the historical eruptive record contains very few eruptions, and hence few data that allow an in-depth characterization of the dynamics of the volcanism in the area. </p><p><span>This year marks the tenth anniversary of the beginning of the last eruption in the Canary Islands (submarine eruption of Tagoro volcano, 2011-2012). In this work we review the main difficulties, concerns and uncertainties that arose in the monitoring of this phenomenon. Some of these problems were solved during the crisis, throughout a multiparametric monitoring and the collaboration of different institutions; others would not be a major problem today, thanks to recent technological advances. On the other hand, </span><span>there are still</span> <span>some unsolved monitoring difficulties when studying an event similar  to the one which lead to Tagoro volcano ten years ago. Part of the complexity is inherent to the spatial distribution of the islands in the archipelago and the limitations on the knowledge of the volcanic phenomenon. </span><span>It is in these last challenges where the key to improve the volcano monitoring in oceanic islands is. </span></p>


2021 ◽  
Author(s):  
Christoph Schmidt ◽  
Christian Laag ◽  
Jörn Profe

<p>Volcanic eruptions may constitute a severe threat for local communities and their infrastructure. Important information as to the prediction of future eruption sites and the likelihood of activity can be obtained by analysis of spatio-temporal eruption pattern in an area of interest. The fact that monogenetic volcanoes, unlike polygenetic ones, erupt only once (within a geologically short period) at a certain spot and then volcanic activity jumps to another spot, renders a quantitative, probabilistic assessment of eruptive cycles challenging. In other words, the purely temporal risk assessment relevant for polygenetic volcanism has to be supplemented by a spatial dimension in case of monogenetic volcanic fields to allow for a combined spatio-temporal forecast.</p><p>While the eruption history of many stratovolcanoes along the Cameroon Line (CL) in Central Africa is comparatively well studied, only fragmentary data exists on the distribution and timing of monogenetic volcanism (mainly scoria cones and maars), presumably associated with Quaternary timescales. Here, we undertake an initial step in closing this gap and present for the first time a map of monogenetic volcanic features for most parts of the CL. Scoria cones and maars were identified by their characteristic morphologies using a combination of field knowledge, digital elevation models and satellite imagery. More than ~1300 scoria cones and 41 maars were detected and divided into eight monogenetic volcanic fields (MVF), as defined by the convex hull of the outermost vents: Bioko, Mt. Cameroon, Kumba, Tombel Graben (including Mt. Manengouba), Noun, Oku, Adamawa, and Biu (Nigeria). However, due to the rugged topography in the Oku volcanic field and the difficulty of identifying volcanic features remotely, the number of mapped scoria cones appears rather incomplete.</p><p>While the delineation of individual MVF bears an inherent subjective moment, statistical analyses of the primary dataset clearly shows that the mean nearest neighbour distance increases from <1 km to ~2 km from the oceanic sector (Bioko, Mt. Cameroon) in the southwest towards the continental part in the northeast (Adamawa, Biu). Correspondingly, the areal density of monogenetic features decreases along this gradient by about one order of magnitude from >0.2 km<sup>-2</sup> (southwest) to 0.02 km<sup>-2</sup> (northeast). This finding is in general agreement with prior geochronological results, indicating increased Quaternary activity towards the central and oceanic part of the CL (e.g., Njome and de Wit, 2014). Tests for the spatial organization of monogenetic volcanoes using the Geological Image Analysis Software (GIAS, v2; Beggan and Hamilton, 2010) revealed that the vents in all MVF are clustered (98% credible interval), thus allowing inferences to be drawn on the tectonic control of (future) eruption locations.</p><p> </p><p>References</p><p>Beggan, C., Hamilton, C.W., 2010. New image processing software for analyzing object size-frequency distributions, geometry, orientation, and spatial distribution. Computers & Geosciences 36, 539-549.</p><p>Njome, M.S., de Wit, M.J., 2014. The Cameroon Line: Analysis of an intraplate magmatic province transecting both oceanic and continental lithospheres: Constraints, controversies and models. Earth-Science Reviews 139, 168-194.</p>


2020 ◽  
Author(s):  
Hugo Murcia ◽  
Károly Németh

The study of monogenetic volcanism around Earth is rapidly growing due to the increasing recognition of monogenetic volcanic edifices in different tectonic settings. Far from the idea that this type of volcanism is both typically mafic and characteristic from intraplate environments, it occurs in a wide spectrum of composition and geological settings. This volcanism is widely known by the distinctive pyroclastic cones that represent both magmatic and phreatomagmatic explosive activity; they are known as scoria or spatter cones, tuff cones, tuff rings, maars and maar-diatremes. These cones are commonly associated with lava domes and usually accompanied by lava flows as part of their effusive eruptive phases. In spite of this, isolated effusive monogenetic emissions also appear around Earth’s surface. However, these isolated emissions are not habitually considered within the classification scheme of monogenetic volcanoes. Along with this, many of these effusive volcanoes also contrast with the belief that this volcanism is indicative of rapidly magma ascent from the asthenosphere, as many of the products are strongly evolved reflecting differentiation linked to stagnation during ascent. This has led to the understanding that the asthenosphere is not always the place that directly gives rise to the magma batches and rather, they detach from a crustal melt storage. This chapter introduces four singular effusive monogenetic volcanoes as part of the volcanic geoforms, highlights the fact that monogenetic volcanic fields can also be associated with crustal reservoirs, and outlines the processes that should occur to differentiate the magma before it is released as intermediate and acidic in composition. This chapter also provides an overview of this particular volcanism worldwide and contributes to the monogenetic comprehension for future studies.


Lithos ◽  
2018 ◽  
Vol 316-317 ◽  
pp. 304-322 ◽  
Author(s):  
Paolo Di Giuseppe ◽  
Samuele Agostini ◽  
Piero Manetti ◽  
Mehmet Yilmaz Savaşçın ◽  
Sandro Conticelli

Sign in / Sign up

Export Citation Format

Share Document