egg recognition
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 25)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
pp. 175815592110660
Author(s):  
Ping Ye ◽  
Yan Cai ◽  
Jianli Bi ◽  
Xiaogang Yao ◽  
Guangrong Li ◽  
...  

Egg recognition and rejection is a common and effective anti-parasitism adaptation in bird hosts. Hosts reject alien eggs using recognition signals such as egg ground color and maculation. Green-backed tits ( Parus monticolus) have a highly developed capability for recognizing parasite eggs, but the cues used for egg recognition are unclear. We combined avian visual perceptual modeling and field experiments to explore the effects of egg ground color and maculation on the recognition of parasite eggs. P. monticolus uses a multi-cue with possible hierarchical mechanism for egg recognition. The mechanism of egg recognition in P. monticolus appears to be a specific adaptation to the phenotypes of eggs laid by local brood parasites.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel Hanley ◽  
Samantha L. Rutledge ◽  
Juliana Villa

Hosts of avian brood parasites are under intense selective pressure to prevent or reduce the cost of parasitism. Many have evolved refined egg discrimination abilities, which can select for eggshell mimicry in their parasite. A classic assumption underlying these coevolutionary dynamics is that host egg recognition depends on the perceivable difference between their own eggs and those of their parasite. Over the past two decades, the receptor noise-limited (RNL) model has contributed to our understanding of these coevolutionary interactions by providing researchers a method to predict a host’s ability to discriminate a parasite’s egg from its own. Recent research has shown that some hosts are more likely to reject brown eggs than blue eggs, regardless of the perceived differences to their own. Such responses suggest that host egg recognition may be due to perceptual or cognitive processes not currently predictable by the RNL model. In this perspective, we discuss the potential value of using the RNL model as a null model to explore alternative perceptual processes and higher-order cognitive processes that could explain how and why some hosts make seemingly counter-intuitive decisions. Further, we outline experiments that should be fruitful for determining the perceptual and cognitive processing used by hosts for egg recognition tasks.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Laikun Ma ◽  
Wei Liang

Abstract Background Nest parasitism by cuckoos (Cuculus spp.) results in enormous reproductive failure and forces hosts to evolve antiparasitic strategies, i.e., recognition of own eggs and rejection of cuckoo eggs. There are often sexual conflicts between male and female individuals in the expression of antiparasitic behavior due to the differences in reproductive inputs and division of labor. Methods By adding a foreign egg made of blue soft clay to the host nest during early incubation period in the field, and by removing several host eggs and adding experimental eggs to control the proportion of two egg types in the nest, we examined egg rejection ability, egg recognition mechanism and sexual difference in egg rejection of the Oriental Reed Warbler (Acrocephalus orientalis), one of the major hosts of Common Cuckoos (Cuculus canorus). Results Our results indicated that Oriental Reed Warblers can recognize and reject nearly 100% (73/75) of the non-mimetic eggs made of blue soft clay, and they could reject foreign eggs with 100% accuracy, regardless of the ratio of experimental eggs and its own eggs in the nest. Furthermore, all cases of egg rejections recorded by videos were only carried out by females. Conclusions Oriental Reed Warblers have a high egg recognition ability and show a true recognition mechanism. Only female warblers perform egg rejection, suggesting that the sex for host egg incubation seems to play an important role in the evolution of egg recognition mechanisms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Peter Samaš ◽  
Mark E. Hauber ◽  
Marcel Honza

The capability of hosts to reject the odd egg from their nest is one of the key defenses against avian brood parasitism. Considerable research effort has been devoted to exploring which phenotypic traits of eggshells facilitate to cue the recognition of the parasitic egg. Here we have reviewed studies addressing salient egg traits involved in the rejection of foreign eggs and used a formal meta-analysis to quantify their relative importance. Hosts appear to rely to a large extent on eggshell color traits, followed by maculation patterns. Hosts respond with similar rates of egg rejection to natural vs. model eggs and when breeding in both closed and open nests. Analyses of experiments on hosts of Cuculus and Molothrus parasites, the two best studied brood parasitic lineages with different co-evolutionary histories, yield similar conclusions. We also identify several poorly studied potential egg recognition cues, such as odor or weight, and recommend exploring even the visual traits in more detail, including chromatic and achromatic contrasts or experimentally manipulated egg maculation characteristics. Recent technological and sensory ecological advances open many new research avenues to experimentally examine the role of diverse egg characteristics in antiparasite defenses.


Reproduction ◽  
2021 ◽  
Author(s):  
Jinxiu Dong ◽  
Siqi Liu ◽  
Ziming Wang ◽  
Kai Zheng ◽  
Mengli Yang ◽  
...  

The specificity of sperm-egg recognition is crucial to species independence, and two proteins (Izumo1 and JUNO) are essential for gamete adhesion/fusion in mammals. However, hybridization, which is very common in turtles, also requires specific recognition of sperm-egg binding proteins. In this study, we discovered that natural selection plays an important role in the codon usage bias of Tu-Izumo1 and Tu-JUNO. Positively selected sites and co-evolutionary analyses between Tu-Izumo1 and Tu-JUNO has been previously reported, and we confirm these results in a larger analysis containing 25 turtle species. We also showed that Tu-JUNO is expressed on the oocyte surface and that Tu-Izumo1 and Tu-JUNO interact with each other directly in different species hybridization combinations. Co-immunization assays revealed that this interaction is evolutionarily conserved in turtles. The results of avidity-based extracellular interaction screening between Tu-Izumo1 and Tu-JUNO for sperm-oocyte binding pairs (both within and across species) likely suggest that the interaction force between Izumo1 and JUNO has a certain correlation in whether the turtles can hybridize. Our results lay a theoretical foundation for the subsequent development of techniques to detect whether different turtle species can interbreed, which would provide the molecular basis for breeding management and species protection of turtles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248021
Author(s):  
Jesús Gómez ◽  
Oscar Gordo ◽  
Piotr Minias

Brood parasitized and/or colonial birds use egg features as visual identity signals, which allow parents to recognize their own eggs and avoid paying fitness costs of misdirecting their care to others’ offspring. However, the mechanisms of egg recognition and discrimination are poorly understood. Most studies have put their focus on individual abilities to carry out these behavioural tasks, while less attention has been paid to the egg and how its signals may evolve to enhance its identification. We used 92 clutches (460 eggs) of the Eurasian coot Fulica atra to test whether eggs could be correctly classified into their corresponding clutches based only on their external appearance. Using SpotEgg, we characterized the eggs in 27 variables of colour, spottiness, shape and size from calibrated digital images. Then, we used these variables in a supervised machine learning algorithm for multi-class egg classification, where each egg was classified to the best matched clutch out of 92 studied clutches. The best model with all 27 explanatory variables assigned correctly 53.3% (CI = 42.6–63.7%) of eggs of the test-set, greatly exceeding the probability to classify the eggs by chance (1/92, 1.1%). This finding supports the hypothesis that eggs have visual identity signals in their phenotypes. Simplified models with fewer explanatory variables (10 or 15) showed lesser classification ability than full models, suggesting that birds may use multiple traits for egg recognition. Therefore, egg phenotypes should be assessed in their full complexity, including colour, patterning, shape and size. Most important variables for classification were those with the highest intraclutch correlation, demonstrating that individual recognition traits are repeatable. Algorithm classification performance improved by each extra training egg added to the model. Thus, repetition of egg design within a clutch would reinforce signals and would help females to create an internal template for true recognition of their own eggs. In conclusion, our novel approach based on machine learning provided important insights on how signallers broadcast their specific signature cues to enhance their recognisability.


2021 ◽  
Vol 8 (1) ◽  
pp. 201615
Author(s):  
Mark E. Hauber ◽  
Sarah K. Winnicki ◽  
Jeffrey P. Hoover ◽  
Daniel Hanley ◽  
Ian R. Hays

Some hosts of avian brood parasites reduce or eliminate the costs of parasitism by removing foreign eggs from the nest (rejecter hosts). In turn, even acceptor hosts typically remove most non-egg-shaped objects from the nest, including broken shells, fallen leaves and other detritus. In search for the evolutionary origins and sensory mechanisms of egg rejection, we assessed where the potential threshold between egg recognition and nest hygiene may lie when it comes to stimulus shape. Most previous studies applied comparisons of egg-sized objects with non-continuous variation in shape. Here, instead, we used two series of three-dimensional-printed objects, designed a priori to increasingly diverge from natural eggs along two axes (width or angularity) of shape variation. As predicted, we detected transitions from mostly acceptance to mostly rejection in the nests of American robins Turdus migratorius along each of the two axes. Our methods parallel previous innovations in egg-rejection studies through the use of continuous variation in egg coloration and maculation contrast, to better understand the sensory limits and thresholds of variation in egg recognition and rejection in diverse hosts of avian brood parasites.


2020 ◽  
Vol 21 (22) ◽  
pp. 8731
Author(s):  
Junki Kamiya ◽  
Woojin Kang ◽  
Keiichi Yoshida ◽  
Ryota Takagi ◽  
Seiya Kanai ◽  
...  

Hermaphroditic invertebrates and plants have a self-recognition system on the cell surface of sperm and eggs, which prevents their self-fusion and enhances non-self-fusion, thereby contributing to genetic variation. However, the system of sperm–egg recognition in mammals is under debate. To address this issue, we explored the role of major histocompatibility complex class I (MHC class I, also known as histocompatibility 2-Kb or H2-Kb and H2-Db in mice) antigens by analyzing H2-Kb-/-H2-Db-/-β2-microglobulin (β2M)-/- triple-knockout (T-KO) male mice with full fertility. T-KO sperm exhibited an increased sperm number in the perivitelline space of wild-type (WT) eggs in vitro. Moreover, T-KO sperm showed multiple fusion with zona pellucida (ZP)-free WT eggs, implying that the ability of polyspermy block for sperm from T-KO males was weakened in WT eggs. When T-KO male mice were intercrossed with WT female mice, the percentage of females in progeny increased. We speculate that WT eggs prefer fusion with T-KO sperm, more specifically X-chromosome-bearing sperm (X sperm), suggesting the presence of preferential (non-random) fertilization in mammals, including humans.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6624
Author(s):  
Chung-Liang Chang ◽  
Bo-Xuan Xie ◽  
Chia-Hui Wang

Free-range chicken farming allows egg-laying hens to move freely through their environment and perform their natural behavior, including laying her eggs. However, it takes time to gather these eggs manually, giving rise to high labor costs. This study proposes a smart mobile robot for poultry farms that can recognize eggs of two different colors on free-range farms. The robot can also pick up and sort eggs without damaging them. An egg feature extraction method with automatic thresholding is employed to detect both white and brown eggs, and a behavior-based navigation method is applied to allow the robot to reach the eggs while avoiding obstacles. The robot can move towards the position of each egg via visual tracking. Once the egg is within the collection area of the robot, it is gathered, sorted and stored in the tank inside the robot. Experiments are carried out in an outdoor field of size 5 m × 5 m under different climatic conditions, and the results showed that the average egg recognition rate is between 94.7% and 97.6%. The proposed mobile poultry robot is low in production cost and simple in operation. It can provide chicken farmers with automatic egg gathering on free-range farms.


Sign in / Sign up

Export Citation Format

Share Document