separation factor
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 58)

H-INDEX

25
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7667
Author(s):  
Paweł Grzybek ◽  
Roman Turczyn ◽  
Gabriela Dudek

The process of ethanol dehydration via pervaporation was performed using alginate membranes filled with manganese dioxide and a mixed filler consisting of manganese dioxide on magnetite core MnO2@Fe3O4 particles. The crystallization of manganese dioxide on magnetite nanoparticle surface resulted in a better dispersibility of this mixed filler in polymer matrix, with the preservation of the magnetic properties of magnetite. The prepared membranes were characterized by contact angle, degree of swelling and SEM microscopy measurements and correlated with their effectiveness in the pervaporative dehydration of ethanol. The results show a strong relation between filler properties and separation efficiency. The membranes filled with the mixed filler outperformed the membranes containing only neat oxide, exhibiting both higher flux and separation factor. The performance changed depending on filler content; thus, the presence of optimum filler loading was observed for the studied membranes. The best results were obtained for the alginate membrane filled with 7 wt.% of mixed filler MnO2@Fe3O4 particles. For this membrane, the separation factor and flux equalled to 483 and 1.22 kg·m−2·h−1, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7513
Author(s):  
Isidro Da Silva ◽  
Taylor R. Johnson ◽  
Jason C. Mixdorf ◽  
Eduardo Aluicio-Sarduy ◽  
Todd E. Barnhart ◽  
...  

Background: Radionuclides emitting Auger electrons (AEs) with low (0.02–50 keV) energy, short (0.0007–40 µm) range, and high (1–10 keV/µm) linear energy transfer may have an important role in the targeted radionuclide therapy of metastatic and disseminated disease. Erbium-165 is a pure AE-emitting radionuclide that is chemically matched to clinical therapeutic radionuclide 177Lu, making it a useful tool for fundamental studies on the biological effects of AEs. This work develops new biomedical cyclotron irradiation and radiochemical isolation methods to produce 165Er suitable for targeted radionuclide therapeutic studies and characterizes a new such agent targeting prostate-specific membrane antigen. Methods: Biomedical cyclotrons proton-irradiated spot-welded Ho(m) targets to produce 165Er, which was isolated via cation exchange chromatography (AG 50W-X8, 200–400 mesh, 20 mL) using alpha-hydroxyisobutyrate (70 mM, pH 4.7) followed by LN2 (20–50 µm, 1.3 mL) and bDGA (50–100 µm, 0.2 mL) extraction chromatography. The purified 165Er was radiolabeled with standard radiometal chelators and used to produce and characterize a new AE-emitting radiopharmaceutical, [165Er]PSMA-617. Results: Irradiation of 80–180 mg natHo targets with 40 µA of 11–12.5 MeV protons produced 165Er at 20–30 MBq·µA−1·h−1. The 4.9 ± 0.7 h radiochemical isolation yielded 165Er in 0.01 M HCl (400 µL) with decay-corrected (DC) yield of 64 ± 2% and a Ho/165Er separation factor of (2.8 ± 1.1) · 105. Radiolabeling experiments synthesized [165Er]PSMA-617 at DC molar activities of 37–130 GBq·µmol−1. Conclusions: A 2 h biomedical cyclotron irradiation and 5 h radiochemical separation produced GBq-scale 165Er suitable for producing radiopharmaceuticals at molar activities satisfactory for investigations of targeted radionuclide therapeutics. This will enable fundamental radiation biology experiments of pure AE-emitting therapeutic radiopharmaceuticals such as [165Er]PSMA-617, which will be used to understand the impact of AEs in PSMA-targeted radionuclide therapy of prostate cancer.


2021 ◽  
Author(s):  
Fernando Ruiz ◽  
Ygnacio Nunez ◽  
Mahra Al Hammadi ◽  
Ibrahim Hamdy ◽  
Eisa Al Shamisi ◽  
...  

Abstract In a current oil & gas challenging drilling environment where the fields are becoming very congested, PAD drilling and field grid designs with close proximity wells operation is booming. Drilling challenging wells with high collision risks is common as a result of the requirement to maximize the Asset value of the oil fields. For this reason, the urge for ensuring accurate well placement is becoming critical and as a result high technology methods are required to be in place. Developing new areas where the poor and/or inaccurate drilled wells information (most of them are vertical) affect planning and placement of new wells due to the uncertainty in existing wells trajectories, causing collision issues among the new planning and the "trajectory" of the existing wells, leaving huge quantities of reservoir volume not possible to drain. For this study case, where the reservoir has some complexity due to faults and water, such limitation is critical. The analysis and fusion of new techniques and procedure to manage the risk for the collision were implemented. Directional tools with high level of accuracy measurements were deployed and stringent procedures are put in place. The Analysis, Logic, Considerations, Mitigations, Risk Assessments and a New Procedure implemented to avoid collision issues while drilling horizontal wells with Separation Factor (SF) less than 2 (standard worldwide is equal or above 2 and for this case, it was 0.6). This was developed by the Biogenic / Unconventional team, Drilling Department of Abu Dhabi National Oil Company (ADNOC) Onshore with the support of drilling service company and the approval of the ADNOC Head Quarter, to take advantage of around 0.9 km2 of hydrocarbon area for future drain. The well was drilled successfully and safely, no collision or magnetic interference issue in any trajectory survey were reported during drilling and passing close by the existing well.


2021 ◽  
Vol MA2021-02 (23) ◽  
pp. 761-761
Author(s):  
Alena V. Novoselova ◽  
Valeri V. Smolenski ◽  
Vladimir A. Volkovich
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hesam Salimi ◽  
Neda Hashemipour ◽  
Javad Karimi-Sabet ◽  
Younes Amini

Abstract In the present work, three-Dimensional stationary numerical simulations were accomplished for a deeper understanding of the gas mixtures separation by the thermogravitational column. To address the optimum condition and examine the limitation of the process, the thermogravitational column behavior has been thoroughly analyzed. First, the simulation model was validated by the experimental results of Youssef et al. then the model was developed for the pilot column. The mixture of helium-argon was chosen as feed composition. It was concluded that the variation of the separation factor in relation to pressure for both columns was almost the same. The optimum condition verified as p = 0.2  atm , θ = 0.4 , m ° = 4   SCCM $p=0.2\text{atm},\theta =0.4,m{\degree}=4\,\text{SCCM}$ .


2021 ◽  
pp. 98-103
Author(s):  
B.V. Borts ◽  
S.F. Skoromnaya ◽  
Yu. G. Kazarinov ◽  
I.M. Neklyudov ◽  
V.I. Tkachenko

The spatial redistribution of the 235U isotope of natural uranium in a gradient temperature field along the height of the reactor in supercritical carbon dioxide has been experimentally investigated. The scheme of the reactor is given and the principle of operation of the reactor is described. The method of preparation of initial samples from granite samples containing natural uranium and the procedure of extraction are described. The conclusion about the spatial redistribution of 235U isotopes in supercritical carbon dioxide is based on the analysis of gamma spectra of extracts. It is shown that the concentration of the 235U isotope in a supercritical fluid is maximal near the lower heated flange of the reactor, and decreases with approaching the upper, cooled flange. It was concluded that the separation factor of the 235U isotope in supercritical carbon dioxide can be about 1.2 ± 0.12.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 735
Author(s):  
Alessandro Micero ◽  
Tawheed Hashem ◽  
Hartmut Gliemann ◽  
Aline Léon

The quality assurance of hydrogen fuel for mobile applications is assessed by the guidelines and directives given in the European and international standards. However, the presence of impurities in the hydrogen fuel, in particular nitrogen, water, and oxygen, is experienced in several refueling stations. Within this work, metal-organic framework (MOF)-based membranes are investigated as a fine-purification stage of the hydrogen fuel. Three H2/N2 concentrations have been used to analyze the separation factor of UiO-66-NH2 membranes prepared using the layer-by-layer (LBL) and the one-pot (OP) synthesis methods. It is shown that the separation factor for an equimolar ratio is 14.4% higher for the LBL sample compared to the OP membrane, suggesting a higher orientation and continuity of the LBL surface-supported metal-organic framework (SURMOF). Using an equimolar ratio of H2/N2, it is shown that selective separation of hydrogen over nitrogen occurs with a separation factor of 3.02 and 2.64 for the SURMOF and MOF membrane, respectively. To the best of our knowledge, this is the highest reported performance for a single-phase UiO-66-NH2 membrane. For higher hydrogen concentrations, the separation factor decreases due to reduced interactions between pore walls and N2 molecules.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 627
Author(s):  
Ayumi Ikeda ◽  
Chie Abe ◽  
Wakako Matsuura ◽  
Yasuhisa Hasegawa

The separation of non-aqueous mixtures is important for chemical production, and zeolite membranes have great potential for energy-efficient separation. In this study, the influence of the framework structure and composition of zeolites on the permeation and separation performance of methanol through zeolite membranes were investigated to develop a methanol permselective zeolite membrane. As a result, the FAU-type zeolite membrane prepared using a solution with a composition of 10 SiO2:1 Al2O3:17 Na2O:1000 H2O showed the highest permeation flux of 86,600 μmol m−2 s−1 and a separation factor of 6020 for a 10 wt% methanol/methyl hexanoate mixture at 353 K. The membrane showed a molecular sieving effect, reducing the single permeation flux of alcohol with molecular size for single-component alcohols. Moreover, the permeation flux of methanol and the separation factor increased with an increase in the carbon number of the alcohols and methyl esters containing 10 wt% methanol. In this study, the permeation behavior of FAU-type zeolite membranes was also discussed based on permeation data. These results suggest that the FAU-type zeolite membrane has the potential to separate organic solvent mixtures, such as solvent recycling and membrane reactors.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 564
Author(s):  
Ching-Wen Hsieh ◽  
Bo-Xian Li ◽  
Shing-Yi Suen

Alicyclic polyimides (PIs) have excellent properties in solubility, mechanical strength, thermal property, etc. This study developed two types of alicyclic PI-based mixed matrix membranes (MMMs) for water/n-butanol pervaporation application, which have never been investigated previously. The fillers were hydrophilic SiO2 nanoparticles. The synthesized PI was mixed with SiO2 nanoparticles in DMAc to make the casting solution, and a liquid film was formed over PET substrate using doctor blade. A dense MMM was fabricated at 80 °C and further treated via multi-stage curing (100–170 °C). The prepared membranes were characterized by FTIR, TGA, FE-SEM, water contact angle, and solvent swelling. The trends of pure solvent swelling effects agree well with the water contact angle results. Moreover, the pervaporation efficiencies of alicyclic PI/SiO2 MMMs for 85 wt% n-butanol aqueous solution at 40 °C were investigated. The results showed that BCDA-3,4′-ODA/SiO2 MMMs had a larger permeation flux and higher separation factor than BCDA-1,3,3-APB/SiO2 MMMs. For both types of MMMs, the separation factor increased first and then decreased, with increasing SiO2 loading. Based on the PSI performance, the optimal SiO2 content was 0.5 wt% for BCDA-3,4′-ODA/SiO2 MMMs and 5 wt% for BCDA-1,3,3-APB/SiO2 MMMs. The overall separation efficiency of BCDA-3,4′-ODA-based membranes was 10–30-fold higher.


Sign in / Sign up

Export Citation Format

Share Document