topoisomerase iiα
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 66)

H-INDEX

48
(FIVE YEARS 5)

BMC Chemistry ◽  
2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Mona Fekadu ◽  
Digafie Zeleke ◽  
Bayan Abdi ◽  
Anuradha Guttula ◽  
Rajalakshmanan Eswaramoorthy ◽  
...  

Abstract Background Quinolines have demonstrated various biological activities such as antimalarial, antibacterial and anticancer. Hence, compounds with such scaffold have been used as lead in drug development. This project is, therefore, aimed to synthesis and evaluates some biological activities of quinoline analogs. Methods 2-Chloro-7-fluoroquinoline-3-carbaldehydes were synthesized by the application of Vilsmeier–Haack reaction. The chlorine in the fluoroquinoline-3-carbaldehyde was replaced with various nucleophiles. The aldehyde functional group was also converted to carboxylic acid and imine groups using oxidizing agent and various amines, respectively. The structures of the compounds synthesized were characterized by spectroscopic methods. Disc diffusion and DPPH assays were used to evaluate the antibacterial and antioxidant activities, respectively. The in silico molecular docking analysis of the synthesized compounds were done using AutoDock Vina against E. coli DNA Gyrase B and human topoisomerase IIα. The drug likeness properties were assessed using SwissADME and PreADMET. Results Nine novel quinoline derivatives were synthesized in good yields. The in vitro antibacterial activity of the synthesized compounds was beyond 9.3 mm inhibition zone (IZ). Compounds 4, 5, 6, 7, 8, 10, 15, and 16 exhibited activity against E. coli, P. aeruginosa, S. aureus and S. pyogenes with IZ ranging from 7.3 ± 0.67 to 15.3 ± 0.33 mm at 200 μg/mL. Compound 9 displayed IZ against three of the bacterial strains except S. aureus. The IC50 for the radical scavenging activity of the synthesized compounds were from 5.31 to 16.71 μg/mL. The binding affinities of the synthesized compounds were from − 6.1 to − 7.2 kcal/mol against E. coli DNA gyrase B and − 6.8 to − 7.4 kcal/mol against human topoisomerase IIα. All of the synthesized compounds obeyed Lipinski’s rule of five without violation. Conclusion Compounds 4, 5, 6, 7, 8, 10, 15, and 16 displayed activity against Gram positive and Gram negative bacterial strains indicating that these compounds might be used as broad spectrum bactericidal activity. Compound 8 (13.6 ± 0.22 mm) showed better IZ against P. aeruginosa compared with ciprofloxacin (10.0 ± 0.45 mm) demonstrating the potential of this compound as antibacterial agent against this strain. Compounds 5, 6, 7, 8, 9 and 10 showed comparable binding affinities in their in silico molecular docking analysis against E. coli DNA gyrase B. All of the synthesized compounds also obeyed Lipinski’s rule of five without violation which suggests these compounds as antibacterial agents for further study. Compounds 7 and 8 were proved to be a very potent radical scavenger with IC50 values of 5.31 and 5.41 μg/mL, respectively. Compound 5, 6, 8, 10 and 16 had comparable binding affinity against human topoisomerase IIα suggesting these compounds as a possible candidate for anticancer drugs.


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 483-497
Author(s):  
Iqubal Singh ◽  
Vijay Luxami ◽  
Diptiman Choudhury ◽  
Kamaldeep Paul

Conjugates of naphthalimide, benzothiazole, and indole moieties are synthesized that show excellent cytotoxicity against A549 (lung), MCF7 (breast), and HeLa (cervix) cancer cell lines with IC50 values in the range of 0.14–8.59 μM.


2021 ◽  
Vol 22 (24) ◽  
pp. 13474
Author(s):  
Matej Janežič ◽  
Katja Valjavec ◽  
Kaja Bergant Loboda ◽  
Barbara Herlah ◽  
Iza Ogris ◽  
...  

In this study, we utilized human DNA topoisomerase IIα as a model target to outline a dynophore-based approach to catalytic inhibitor design. Based on MD simulations of a known catalytic inhibitor and the native ATP ligand analog, AMP-PNP, we derived a joint dynophore model that supplements the static structure-based-pharmacophore information with a dynamic component. Subsequently, derived pharmacophore models were employed in a virtual screening campaign of a library of natural compounds. Experimental evaluation identified flavonoid compounds with promising topoisomerase IIα catalytic inhibition and binding studies confirmed interaction with the ATPase domain. We constructed a binding model through docking and extensively investigated it with molecular dynamics MD simulations, essential dynamics, and MM-GBSA free energy calculations, thus reconnecting the new results to the initial dynophore-based screening model. We not only demonstrate a new design strategy that incorporates a dynamic component of molecular recognition, but also highlight new derivates in the established flavonoid class of topoisomerase II inhibitors.


ACS Omega ◽  
2021 ◽  
Vol 6 (40) ◽  
pp. 25892-25903
Author(s):  
Ashley C. Dougherty ◽  
Mariam G. Hawaz ◽  
Kristine G. Hoang ◽  
Judy Trac ◽  
Jacob M. Keck ◽  
...  

2021 ◽  
Author(s):  
Yijie Geng ◽  
Tejia Zhang ◽  
Sean C. Godar ◽  
Brock R. Pluimer ◽  
Devin L. Harrison ◽  
...  

Human infants exhibit innate social behaviors at birth, yet little is understood about the embryonic development of sociality. We screened 1120 known drugs and found that embryonic inhibition of topoisomerase IIα (Top2a) resulted in lasting social deficits in zebrafish. In mice, prenatal Top2 inhibition caused behavioral defects related to core symptoms of autism, including impairments in social interaction and communication. Mutation of Top2a in zebrafish caused downregulation of a set of genes highly enriched for genes associated with autism in humans. Both the Top2a-regulated and autism-associated gene sets possess binding sites for polycomb repressive complex 2 (PRC2), a regulatory complex responsible for H3K27 trimethylation. Moreover, both gene sets are highly enriched for H3K27me3. Inhibition of PRC2 component Ezh2 rescued social deficits caused by Top2 inhibition. Therefore, Top2a is a key component of an evolutionarily conserved pathway that promotes the development of social behavior through PRC2 and H3K27me3.


Sign in / Sign up

Export Citation Format

Share Document