lm algorithm
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 46)

H-INDEX

6
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 295
Author(s):  
Kunyong Yu ◽  
Zhenbang Hao ◽  
Christopher J. Post ◽  
Elena A. Mikhailova ◽  
Lili Lin ◽  
...  

Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many algorithms, including classical methods and deep learning techniques, have been developed and applied for tree crown detection from remote sensing images. However, few studies have evaluated the accuracy of different individual tree detection (ITD) algorithms and their data and processing requirements. This study explored the accuracy of ITD using local maxima (LM) algorithm, marker-controlled watershed segmentation (MCWS), and Mask Region-based Convolutional Neural Networks (Mask R-CNN) in a young plantation forest with different test images. Manually delineated tree crowns from UAV imagery were used for accuracy assessment of the three methods, followed by an evaluation of the data processing and application requirements for three methods to detect individual trees. Overall, Mask R-CNN can best use the information in multi-band input images for detecting individual trees. The results showed that the Mask R-CNN model with the multi-band combination produced higher accuracy than the model with a single-band image, and the RGB band combination achieved the highest accuracy for ITD (F1 score = 94.68%). Moreover, the Mask R-CNN models with multi-band images are capable of providing higher accuracies for ITD than the LM and MCWS algorithms. The LM algorithm and MCWS algorithm also achieved promising accuracies for ITD when the canopy height model (CHM) was used as the test image (F1 score = 87.86% for LM algorithm, F1 score = 85.92% for MCWS algorithm). The LM and MCWS algorithms are easy to use and lower computer computational requirements, but they are unable to identify tree species and are limited by algorithm parameters, which need to be adjusted for each classification. It is highlighted that the application of deep learning with its end-to-end-learning approach is very efficient and capable of deriving the information from multi-layer images, but an additional training set is needed for model training, robust computer resources are required, and a large number of accurate training samples are necessary. This study provides valuable information for forestry practitioners to select an optimal approach for detecting individual trees.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Yaoxin Zheng ◽  
Shiyan Li ◽  
Kang Xing ◽  
Xiaojuan Zhang

Unmanned aerial vehicles (UAVs) have become a research hotspot in the field of magnetic exploration because of their unique advantages, e.g., low cost, high safety, and easy to operate. However, the lack of effective data processing and interpretation method limits their further deployment. In view of this situation, a complete workflow of UAV magnetic data processing and interpretation is proposed in this paper, which can be divided into two steps: (1) the improved variational mode decomposition (VMD) is applied to the original data to improve its signal-to-noise ratio as much as possible, and the decomposition modes number K is determined adaptively according to the mode characteristics; (2) the parameters of target position and magnetic moment are obtained by Euler deconvolution first, and then used as the prior information of the Levenberg–Marquardt (LM) algorithm to further improve its accuracy. Experiments are carried out to verify the effectiveness of the proposed method. Results show that the proposed method can significantly improve the quality of the original data; by combining the Euler deconvolution and LM algorithm, the horizontal positioning error can be reduced from 15.31 cm to 4.05 cm, and the depth estimation error can be reduced from 16.2 cm to 5.4 cm. Moreover, the proposed method can be used not only for the detection and location of near-surface targets, but also for the follow-up work, such as the clearance of targets (e.g., the unexploded ordnance).


2022 ◽  
pp. 913-932
Author(s):  
G. Vimala Kumari ◽  
G. Sasibhushana Rao ◽  
B. Prabhakara Rao

This article presents an image compression method using feed-forward back-propagation neural networks (NNs). Marked progress has been made in the area of image compression in the last decade. Image compression removing redundant information in image data is a solution for storage and data transmission problems for huge amounts of data. NNs offer the potential for providing a novel solution to the problem of image compression by its ability to generate an internal data representation. A comparison among various feed-forward back-propagation training algorithms was presented with different compression ratios and different block sizes. The learning methods, the Levenberg Marquardt (LM) algorithm and the Gradient Descent (GD) have been used to perform the training of the network architecture and finally, the performance is evaluated in terms of MSE and PSNR using medical images. The decompressed results obtained using these two algorithms are computed in terms of PSNR and MSE along with performance plots and regression plots from which it can be observed that the LM algorithm gives more accurate results than the GD algorithm.


Author(s):  
Liang Chen ◽  
Youpeng Huang ◽  
Tao Lu ◽  
Sanlei Dang ◽  
Zhengmin Kong

The current method of smart meter verification relies on manual regular sampling inspection, which is heavy in workload and poor in real-time, and can’t fully monitor all the equipments. Therefore, a remote real-time error monitoring algorithm is indispensable. We propose a smart meter error estimation model based on genetic optimized Levenberg-Marquarelt (LM) algorithm. Firstly, based on the law of conservation of energy, the relationship between smart meter error and electricity consumption is established. Then, LM algorithm is optimized based on genetic algorithm and used to estimate the operating error of electricity meter. Finally, we used the actual data of the pilot cities in a province for the experiment. The results show that the proposed method can effectively improve the accuracy of smart meter error estimation.


Author(s):  
Yu Li ◽  
Sheng Qiang ◽  
Chao Xu ◽  
Wenqiang Xu ◽  
Jiayu Lai ◽  
...  

Under long-term load, the creep deformation of concrete materials has a serious impact on the structural safety of hydraulic structures, especially under the action of ultra-high stress levels, the concrete materials will undergo nonlinear creep, which is extremely easy to cause structural damage. In this study, the uniaxial nonlinear creep test of concrete specimens was used to establish the damage index based on the wave velocity value of ultrasonic flaw detection, and the creep and damage degree curve of the concrete specimen were obtained. The ideal elastic element, the Kelvin body, and the nonlinear viscoplastic element are connected in series, and a new viscoelastic–plastic model considering the creep characteristics of concrete is proposed. Based on the principle of least squares, the Levenberg–Marquardt (LM) algorithm is used to inverse the parameters of the nonlinear creep test. In addition, the model is verified by the measured data of linear creep. At the same time, the sensitivity of each model parameter is analyzed. The research shows that the LM algorithm can give the fitting parameters of the model better and faster, and the fitting values of the model are similar to the experimental results. The sensitivity analysis of the parameters shows that the proposed model has good stability and good adaptability. The model has a more accurate description of the various stages of creep, and may be conveniently applied to concrete creep calculations in actual projects.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2176
Author(s):  
Zhiqi Yan ◽  
Shisheng Zhong ◽  
Lin Lin ◽  
Zhiquan Cui

Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network optimized by the algorithm is trained with engineering data. In this work, we analyzed the reasons for the LM neural network’s poor convergence commonly associated with the LM algorithm. Specifically, the effects of different activation functions such as Sigmoid, Tanh, Rectified Linear Unit (RELU) and Parametric Rectified Linear Unit (PRLU) were evaluated on the general performance of LM neural networks, and special values of LM neural network parameters were found that could make the LM algorithm converge poorly. We proposed an adaptive LM (AdaLM) algorithm to solve the problem of the LM algorithm. The algorithm coordinates the descent direction and the descent step by the iteration number, which can prevent falling into the local minimum value and avoid the influence of the parameter state of LM neural networks. We compared the AdaLM algorithm with the traditional LM algorithm and its variants in terms of accuracy and speed in the context of testing common datasets and aero-engine data, and the results verified the effectiveness of the AdaLM algorithm.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255216
Author(s):  
Zhengwei Ma ◽  
Wenjia Hou ◽  
Dan Zhang

Peer-to-Peer (P2P) lending provides convenient and efficient financing channels for small and medium-sized enterprises and individuals, and therefore it has developed rapidly since entering the market. However, due to the imperfection of the credit system and the influence of cyberspace restrictions, P2P network lending faces frequent borrower credit risk crises during the transaction process, with a high proportion of borrowers default. This paper first analyzes the basic development of China’s P2P online lending and the credit risks of borrowers in the industry. Then according to the characteristics of P2P network lending and previous studies, a credit risk assessment indicators system for borrowers in P2P lending is formulated with 29 indicators. Finally, on the basis of the credit risk assessment indicators system constructed in this paper, BP neural network is built based on the BP algorithm, which is trained by the LM algorithm (Levenberg-Marquardt), Scaled Conjugate Gradient, and Bayesian Regularization respectively, to complete the credit risk assessment model. By comparing the results of three mentioned training methodologies, the BP neural network trained by the LM algorithm is finally adopted to construct the credit risk assessment model of borrowers in P2P lending, in which the input layer node is 9, the hidden layer node is 11 and output layer node is 1. The model can provide practical guidance for China and other countries’ P2P lending platforms, and therefore to establish and improve an accurate and effective borrower credit risk management system.


Sign in / Sign up

Export Citation Format

Share Document