untreated soil
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 39)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Gregory P. Brown ◽  
Richard Shine

Reptile eggs develop in intimate association with microbiota in the soil, raising the possibility that embryogenesis may be affected by shifts in soil microbiota caused by anthropogenic disturbance, translocation of eggs for conservation purposes, or laboratory incubation in sterile media. To test this idea we incubated eggs of keelback snakes (Tropidonophis mairii, Colubridae) in untreated versus autoclaved soil, and injected lipopolysaccharide (LPS) into the egg to induce an immune response in the embryo. Neither treatment modified hatching success, water uptake, incubation period, or white-blood-cell profiles, but both treatments affected hatchling size. Eggs incubated on autoclaved soil produced smaller hatchlings than did eggs on untreated soil, suggesting that heat and/or pressure treatment decrease the soil’s suitability for incubation. Injection of LPS reduced hatchling size, suggesting that the presence of pathogen cues disrupts embryogenesis, possibly by initiating immune reactions unassociated with white-blood-cell profiles. Smaller neonates had higher ratios of heterophils to leucocytes, consistent with higher stress in smaller snakes, or body-size effects on investment into different types of immune cells. Microbiota in the incubation medium thus can affect viability-relevant phenotypic traits of hatchling reptiles. We need further studies to explore the complex mechanisms and impacts of environmental conditions on reptilian embryogenesis.


2021 ◽  
Vol 117 (4) ◽  
pp. 1
Author(s):  
Mohamed SABER ◽  
Alaa M ZAGHLOUL

<p class="042abstractstekst"><span lang="EN-US">To sightsee the bearings of the certain remediation amendments, usually applied in the bioremediation of soils irrigated with low quality water for extended periods on the indigenous microbial population, a greenhouse experiment was conducted at National Research Centre (NRC) where the soil ecosystem was supplied with varied mineral remediation amendments and the carbon dioxide (CO<sub>2</sub>) refluxes were followed up. In this study, microbial activity through CO<sub>2</sub> efflux was taken as an indicator to evaluate the effectiveness of eight soil amendments in minimizing the hazards of inorganic pollutants in soil ecosystem irrigated with low quality water s for more than 40 years. Results showed that Ni and Zn were the most dominant contaminants that adversely influenced indigenous microbial activities in untreated soil, while Cu was the most persuasive. All trailed remediation amendments significantly minimized the hazards of inorganic pollutants in treated soil ecosystems. In addition, modified bentonite (Probentonite) was the best persuasive one. Mechanisms take place between trailed remediation amendments and inorganic pollutants in the studied soil ecosystems were discussed. In conclusion application of certain raw or modified clay minerals especially Probentonite could be a good tool in decreasing the rate of the studied inorganic pollutants in a contaminated soil ecosystem irrigated with low quality water for extended periods. </span></p>


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 277
Author(s):  
Saowanee Wijitkosum ◽  
Thavivongse Sriburi

Many agronomical wastes are produced annually in significant amounts after cultivation, especially in agricultural countries. This study applied biochar produced from the pyrolysis of cassava stems to improve soil with low fertility for maize cultivation. The effect of soil biochar incorporation on maize yield and productivity was also investigated. Eight experimental plots, each with four replicates, were applied with cassava stem biochar (CSB) at different rates of 0.5 kg/m2 (TB0.5), 2.5 kg/m2 (TB2.5) and 3.0 kg/m2 (TB3.0), fertilizer at 0.56 kg/m2 (TM), fertilizer at 0.56 kg/m2 mixed with CSB at 0.5 kg/m2 (TMB0.5), 2.5 kg/m2 (TMB2.5), 3.0 kg/m2 (TMB3.0) and untreated soil (TC). Pyrolysis of cassava stems at 450–500 °C produced strongly alkaline CSB with pH 9.6 and increased nutrient contents. Specific surface area and total pore volume increased, and pores were classified as mesoporous, while average pore diameter decreased. CSB had a highly stable carbon content of 58.46%, with high aromaticity and polarity obtained from O/C and H/C ratios. Results indicated that CSB enhanced and supported maize growth by improving soil physicochemical properties to suit cultivation. Applying CSB into the soil gave higher maize yield and productivity than cultivation using fertilizer. The highest yield and nutrition contents were obtained in seed from cultivation using fertilizer mixed with biochar at 3.0 kg/m2. Biochar production from cassava stems generated a useful commodity from waste material.


Author(s):  
Nikita M. Debkov ◽  

Intensification of forestry requires the use of modern methods of reforestation, which include the introduction of container planting material. The purpose of this work is to evaluate the survival rate and linear growth of spruce container seedlings depending on the planting site location and the agrotechnical tending. The studies were carried out at the test site located in the Tomsk district of the Tomsk region. It was found that many planting containers store not 1 seedling, but 2–4 pcs and therefore approximately the same quantity of seedlings as in the traditional planting of container planting material. It was revealed that the height of 30–35 % of seedlings fails to fulfill the standard values, which was observed, as a rule, in the planting containers with several plants. According to the autumn inventory data, the height of plantations created by planting seedlings in the furrow bottom (Kruskal-Wallis test, p = 0.0001 > 0.05) reliably differs from the height of plantations of “mound” and “untreated soil” options. In terms of height growth, the options “mound side” and “furrow” have the best performance, also significantly different from the options “mound” and “untreated soil” (Kruskal-Wallis test, p = 0.0001 > 0.05). Survival rate below 85 % was observed in the plantings of the following options: “untreated soil”, “furrow bottom”, and “mound” with agrotechnical tending. The 3-fold tending decreased the survival rate of plantations except for planting in the mound side. Thus, the most successful option of planting is planting in the mound side. For citation: Debkov N.M. Experience in the Creation of Forest Plantations Using Container Seedlings. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 5, pp. 192–200. DOI: 10.37482/0536-1036-2021-5-192-200


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Partab Rai ◽  
Wenge Qiu ◽  
Huafu Pei ◽  
Jihui Chen ◽  
Xufeng Ai ◽  
...  

The effectiveness of the use of waste fly ash (FA) and cement (OPC) in the stabilization of subgrade soils and the reasons likely to influence the degree of stabilization were investigated. Incorporating waste fly ash (FA) and cement (OPC) as additives leads to significant environmental and economic contributions to soil stabilization. This study involves laboratory tests to obtain the Atterberg limit, free swell index (FSI), the unconfined compressive strength (UCS), the California bearing ratio (CBR), and the scanning electron microscope (SEM). The test results for the subgrade soil illustrate that the Atterberg limit, plasticity index, and free swell index are decreasing with the addition of different proportions of fly ash and cement, i.e., 0%, 5%, 10%, 15%, and 20% and 0%, 2%, 4%, 6%, and 8%, respectively. The CBR value of untreated soil is 2.91%, while the best CBR value of fly ash and cement mixture treated soil is 10.12% (20% FA+8% OPC), which increases 71.34% from the initial value. The UCS of untreated soil is 86.88 kPa and treated soil with fly ash and cement attains a maximum value of 167.75 kPa (20% FA+8% OPC), i.e., increases by 48.20% from the initial value. The tests result show that the stability of a subgrade soil can be improved by adding fly ash and cement. While effectiveness and usability of waste FA and cement are cost-effective and environmentally friendly alternatives to expansive soil for pavement and any other foundation work in the future.


Author(s):  
A. Comegna ◽  
G. Dragonetti ◽  
R. Kodesova ◽  
A. Coppola

AbstractThe Mediterranean area concentrates the world’s largest production area of olive oil. The olive oil industry represents, in this basin, one of the leading sectors of the agri-food economy. Olive mill water (OMW) is the principal waste effluent produced by the olive oil industry. Due to its high pollution load, this aqueous by-product cannot be directly disposed of in domestic wastewater treatment plants (especially those with a biological treatment unit). Untreated OMW is currently used for agronomic purposes in several countries, mainly because it is rich in valuable plant nutrients. However, OMW is characterized by toxic phenols, high organic matter, high salinity, suspended solids and several other components that may have possible negative effects on chemical and physical soil properties, as well as soil biological activities. In the present research, we focused on the effects of OMW application on transport and hydraulic soil properties. Three distinct soils from a pedological point of view were selected and a series of laboratory steady-state miscible flow tests were conducted under saturated conditions, on both OMW-treated and -untreated soil columns. Tests were conducted on disturbed and undisturbed soil columns. The approach proposed by Kachanoski, based on soil impedance (Z) measurements via the time domain reflectometry (TDR) technique, was used to monitor the leaching experiments. The breakthrough curves (BTCs) exhibited different shapes that allowed the repercussions of OMW applications on soil transport behaviour to be distinguished. Several additional tests conducted on OMW-treated and -untreated soil cores to determine water retention curves (SWRCs) and saturated hydraulic conductivity Ks allowed us to infer the probable mechanisms involved in soil hydrological behaviour changes under OMW treatments. The results show that when OMW leaches into the soil immediately after its disposal there is little effect on the evaluated hydraulic and hydrodispersive properties. By contrast, we demonstrated that a short incubation period (i.e. a short contact time between OMW and soil) of 10 days is enough to exert a great influence on all the values determined (e.g. soil pore velocity v and Ks reduced by up to one order of magnitude). These effects were especially evident in undisturbed soil samples. Graphic Abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Rouf Ahmad Mir ◽  
Sarita Shrivastava ◽  
Pragya Singh Pawaiya ◽  
Hemant Samadhiya

Vermin biotechnology is an eco-friendly technique and economically beneficent process to mitigate organic waste. India’s agro-industrial sector contributes colossal wealth of plant materials in the form of compost. The present study aims to publicize soil healthiness and its plant growth supplying possessions further corroborating the use of organic amendments instead of fertilizers. Plastic replicates investigation is an exercise in eighteen replicates in which fifteen were soil amendment treatments: one triplicate-control, 0% vermicompost, 50%, 25%, 12.5%, 6.25%, and 3.125% vermicompost of soil. Containers contained 2 kg soil each, in which seeds are sown, and the measurement of studied traits (length of shoot, length of internodes, flowers, leaves number and number of branches, and rate of germination) was noticed. The earthworms (Eudrilus eugeniae and Aporrectodea caliginosa) feed on waste like broiler droppings, the dung of sheep and cow, leaves, and decomposed wood and convert it into vermicompost, which required 72 days to extenuate the waste. Each setup was conducted on plastic containers, and there would be control and the test at respective experiments. Vermicompost was prepared; obviously, it contains better farming nutrients analyzed by different scientific methods and is very efficient for plant growth and other features. The main objective of the study was the effect of quality vermicompost produced by A. caliginosa on the exomorphology and rate of germination of Phaseolus vulgaris. Different ratios of vermicompost in respective replicates affect plant growth and external morphology, which is directly linked with nutrients present in treated and untreated soil. The outcomes suggested that vermicompost can be overworked as an efficacious biofertilizer.


2021 ◽  
pp. 21-26
Author(s):  
Halima Isa ◽  
Mohammed Bashir ◽  
Maryam Ibraheem ◽  
Aisha Mahmud Marafa

Aims: To determine the effect of [N-(phosphonomethl)-glycine] (glyphosate) herbicide on soil bacterial and fungal population. Study Design:The effect glyphosate herbicide on soil microorganisms population on 2 different farm land was determined by Isolation of bacteria and fungi from untreated and Glyphosate herbicide treated soils using Nutrient agar and Potatoes dextrose agar (PDA) for the bacteria and fungi respectively. The number of bacteria and fungi present in both treated and untreated soil was then enumerated and the isolates determined. Place and Duration of Study: The study is a cross sectional research and was conducted on two Farm lands located at Yola capital city of Adamawa state Nigeria wheresoil samples were collected and Microbiology laboratory of Modibbo Adama University Yola were the sample was processed and analyzed. The study was conducted from February to May of 2021. Methodology: Bacteria and fungi were isolated from soil samples before and after treatment of the soils with N-(phosphonomethl)-glycine(Glyphosate) herbicide at different concentration, the bacteria and fungi populations isolated both before and after the treatment were compared. Results: The study showed that Glyphosate herbicide caused reduction in the bacterial and fungal count from 3 days of treatment up to 15 days. The bacterial count reduced from 6.1x108cfu/g in the untreated soil to 1.6x108cfu/g on the treatment. Also the fungal count reduced from 1.0x108cfu/g in the untreated soil to 5.0x107cfu/g after 15days of soil treatment. Both the bacterial and fungal count continues to show a gradual decrease up to 15 days in the treated soil. However, several bacteria and fungi were isolated with Bacillus spp. and Micrococcus spp. having the bacteria with highest occurrence with 42(19.91%) and Aspergillusspp. as the fungi with the highest occurrence with 12(42.85%). Statistical analysis of the data obtained indicated that At 95% confidence level, there is a significant difference in the population of bacteria and fungi before and after the soil treatment P-value(T˃t)=.001 Conclusion: The study revealed that Glyphosate herbicide has a negative effect on soil bacteria and fungi population.


2021 ◽  
Vol 13 (11) ◽  
pp. 6430
Author(s):  
Norshakila Abdul Wahab ◽  
Mohammad Jawed Roshan ◽  
Ahmad Safuan A. Rashid ◽  
Muhammad Azril Hezmi ◽  
Siti Norafida Jusoh ◽  
...  

The transportation infrastructure, including low-volume roads in some regions, needs to be constructed on weak ground, implying the necessity of soil stabilization. Untreated and cement-treated lateritic soil for low-volume road suitability were studied based on Malaysian standards. A series of unconfined compressive strength (UCS) tests was performed for four cement doses (3%, 6%, 9%, 12%) for different curing times. According to Malaysian standards, the study suggested 6% cement and 7 days curing time as the optimum cement dosage and curing time, respectively, based on their 0.8 MPa UCS values. The durability test indicated that the specimens treated with 3% cement collapsed directly upon soaking in water. Although the UCS of 6% cement-treated specimens decreased against wetting–drying (WD) cycles, the minimum threshold based on Malaysian standards was still maintained against 15 WD cycles. On the contrary, the durability of specimens treated with 9% and 12% cement represented a UCS increase against WD cycles. FESEM results indicated the formation of calcium aluminate hydrate (CAH), calcium silicate hydrate (CSH), and calcium aluminosilicate hydrate (CASH) as well as shrinking of pore size when untreated soil was mixed with cement. The formation of gels (CAH, CSH, CASH) and decreasing pore size could be clarified by EDX results in which the increase in cement content increased calcium.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 469
Author(s):  
Marioara Nicoleta Filimon ◽  
Diana Larisa Roman ◽  
Ion Valeriu Caraba ◽  
Adriana Isvoran

Herbicides are being used more and more to increase productivity in agriculture, but their excessive has been shown to lead to adverse effects on the environment, especially on the soil. Within this study the effect of the herbicide S-metolachlor on the activity of several enzymes (dehydrogenase, protease, phosphatase and urease) found in the loamy-clayey soil has been analyzed. There were seven experimental variants corresponding to the untreated soil and to the application of six distinct doses of S-metolachlor on soil samples maintained in laboratory conditions. Biochemical analyzes have been performed to assess the activities of the investigated enzymes at 7, 14 and 21 days, respectively, and several physiochemical parameters of the soil have been also monitored during these experiments. The data obtained in the experimental determinations were subjected to statistical analysis such as to evaluate if the changes in the activities of enzymes are significant and to establish if there are correlations between the evolution of analyzed enzymatic activities and the physicochemical parameters of the soil. Molecular docking approach has been also used to assess the interactions between the herbicide and investigated enzymes. The activities of studied enzymes decreased in a dose-dependent manner when the herbicide was applied. More than 21 days were necessary to recover the activities of dehydrogenase and protease in the soil treated with S-metolachlor, the activity of protease was recovered after 14 days and the activity of urease was recuperated after 7 days of incubation. This study also emphasized significant correlations between the enzymatic activities and some physicochemical parameters of the soil: pH, moisture, organic matter, nitrogen level and available phosphorus.


Sign in / Sign up

Export Citation Format

Share Document