high dimensional datasets
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 100)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
S. Dinesh

Abstract: Homology detection plays a major role in bioinformatics. Different type of methods is used for Homology detection. Here we extract the information from protein sequences and then uses the various algorithm to predict the similarity between protein families. SVM most commonly used the algorithm in homology detection. Classification techniques are not suitable for homology detection because theyare not suitable for high dimensional datasets. Soreducing the higher dimensionality is very important than easily can predict the similarity of protein families. Keywords: Homology detection, Protein, Sequence, Reducing dimensionality, BLAST, SCOP.


2021 ◽  
Vol 75 (12) ◽  
pp. 1017-1021
Author(s):  
Robbie Loewith ◽  
Aurélien Roux ◽  
Olivier Pertz

To understand the complex biochemistry and biophysics of biological systems, one needs to be able to monitor local concentrations of molecules, physical properties of macromolecular assemblies and activation status of signaling pathways, in real time, within single cells, and at high spatio-temporal resolution. Here we look at the tools that have been / are being / need to be provided by chemical biology to address these challenges. In particular, we highlight the utility of molecular probes that help to better measure mechanical forces and flux through key signalling pathways. Chemical biology can be used to both build biosensors to visualize, but also actuators to perturb biological processes. An emergent theme is the possibility to multiplex measurements of multiple cellular processes. Advances in microscopy automation now allow us to acquire datasets for 1000's of cells. This produces high dimensional datasets that require computer vision approaches that automate image analysis. The high dimensionality of these datasets are often not immediately accessible to human intuition, and, similarly to 'omics technologies, require statistical approaches for their exploitation. The field of biosensor imaging is therefore experiencing a multidisciplinary transition that will enable it to realize its full potential as a tool to provide a deeper appreciation of cell physiology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gabriel J. Odom ◽  
Antonio Colaprico ◽  
Tiago C. Silva ◽  
X. Steven Chen ◽  
Lily Wang

Recent advances in technology have made multi-omics datasets increasingly available to researchers. To leverage the wealth of information in multi-omics data, a number of integrative analysis strategies have been proposed recently. However, effectively extracting biological insights from these large, complex datasets remains challenging. In particular, matched samples with multiple types of omics data measured on each sample are often required for multi-omics analysis tools, which can significantly reduce the sample size. Another challenge is that analysis techniques such as dimension reductions, which extract association signals in high dimensional datasets by estimating a few variables that explain most of the variations in the samples, are typically applied to whole-genome data, which can be computationally demanding. Here we present pathwayMultiomics, a pathway-based approach for integrative analysis of multi-omics data with categorical, continuous, or survival outcome variables. The input of pathwayMultiomics is pathway p-values for individual omics data types, which are then integrated using a novel statistic, the MiniMax statistic, to prioritize pathways dysregulated in multiple types of omics datasets. Importantly, pathwayMultiomics is computationally efficient and does not require matched samples in multi-omics data. We performed a comprehensive simulation study to show that pathwayMultiomics significantly outperformed currently available multi-omics tools with improved power and well-controlled false-positive rates. In addition, we also analyzed real multi-omics datasets to show that pathwayMultiomics was able to recover known biology by nominating biologically meaningful pathways in complex diseases such as Alzheimer’s disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yiyang Hong ◽  
Xingwen Zhao ◽  
Hui Zhu ◽  
Hui Li

With the rapid development of information technology, people benefit more and more from big data. At the same time, it becomes a great concern that how to obtain optimal outputs from big data publishing and sharing management while protecting privacy. Many researchers seek to realize differential privacy protection in massive high-dimensional datasets using the method of principal component analysis. However, these algorithms are inefficient in processing and do not take into account the different privacy protection needs of each attribute in high-dimensional datasets. To address the above problem, we design a Divided-block Sparse Matrix Transformation Differential Privacy Data Publishing Algorithm (DSMT-DP). In this algorithm, different levels of privacy budget parameters are assigned to different attributes according to the required privacy protection level of each attribute, taking into account the privacy protection needs of different levels of attributes. Meanwhile, the use of the divided-block scheme and the sparse matrix transformation scheme can improve the computational efficiency of the principal component analysis method for handling large amounts of high-dimensional sensitive data, and we demonstrate that the proposed algorithm satisfies differential privacy. Our experimental results show that the mean square error of the proposed algorithm is smaller than the traditional differential privacy algorithm with the same privacy parameters, and the computational efficiency can be improved. Further, we combine this algorithm with blockchain and propose an Efficient Privacy Data Publishing and Sharing Model based on the blockchain. Publishing and sharing private data on this model not only resist strong background knowledge attacks from adversaries outside the system but also prevent stealing and tampering of data by not-completely-honest participants inside the system.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pengyi Yang ◽  
Hao Huang ◽  
Chunlei Liu

AbstractRecent advances in single-cell biotechnologies have resulted in high-dimensional datasets with increased complexity, making feature selection an essential technique for single-cell data analysis. Here, we revisit feature selection techniques and summarise recent developments. We review their application to a range of single-cell data types generated from traditional cytometry and imaging technologies and the latest array of single-cell omics technologies. We highlight some of the challenges and future directions and finally consider their scalability and make general recommendations on each type of feature selection method. We hope this review stimulates future research and application of feature selection in the single-cell era.


2021 ◽  
Vol 2021 (12) ◽  
pp. 124005
Author(s):  
Franco Pellegrini ◽  
Giulio Biroli

Abstract Neural networks have been shown to perform incredibly well in classification tasks over structured high-dimensional datasets. However, the learning dynamics of such networks is still poorly understood. In this paper we study in detail the training dynamics of a simple type of neural network: a single hidden layer trained to perform a classification task. We show that in a suitable mean-field limit this case maps to a single-node learning problem with a time-dependent dataset determined self-consistently from the average nodes population. We specialize our theory to the prototypical case of a linearly separable data and a linear hinge loss, for which the dynamics can be explicitly solved in the infinite dataset limit. This allows us to address in a simple setting several phenomena appearing in modern networks such as slowing down of training dynamics, crossover between rich and lazy learning, and overfitting. Finally, we assess the limitations of mean-field theory by studying the case of large but finite number of nodes and of training samples.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jenna L. Wardini ◽  
Hasti Vahidi ◽  
Huiming Guo ◽  
William J. Bowman

Transmission electron microscopy (TEM), and its counterpart, scanning TEM (STEM), are powerful materials characterization tools capable of probing crystal structure, composition, charge distribution, electronic structure, and bonding down to the atomic scale. Recent (S)TEM instrumentation developments such as electron beam aberration-correction as well as faster and more efficient signal detection systems have given rise to new and more powerful experimental methods, some of which (e.g., 4D-STEM, spectrum-imaging, in situ/operando (S)TEM)) facilitate the capture of high-dimensional datasets that contain spatially-resolved structural, spectroscopic, time- and/or stimulus-dependent information across the sub-angstrom to several micrometer length scale. Thus, through the variety of analysis methods available in the modern (S)TEM and its continual development towards high-dimensional data capture, it is well-suited to the challenge of characterizing isometric mixed-metal oxides such as pyrochlores, fluorites, and other complex oxides that reside on a continuum of chemical and spatial ordering. In this review, we present a suite of imaging and diffraction (S)TEM techniques that are uniquely suited to probe the many types, length-scales, and degrees of disorder in complex oxides, with a focus on disorder common to pyrochlores, fluorites and the expansive library of intermediate structures they may adopt. The application of these techniques to various complex oxides will be reviewed to demonstrate their capabilities and limitations in resolving the continuum of structural and chemical ordering in these systems.


2021 ◽  
Author(s):  
Andrew R Ghazi ◽  
Kathleen Sucipto ◽  
Gholamali Rahnavard ◽  
Eric A Franzosa ◽  
Lauren J McIver ◽  
...  

Modern biological screens yield enormous numbers of measurements, and identifying and interpreting statistically significant associations among features is essential. Here, we present a novel hierarchical framework, HAllA (Hierarchical All-against-All association testing), for structured association discovery between paired high-dimensional datasets. HAllA efficiently integrates hierarchical hypothesis testing with false discovery rate correction to reveal significant linear and non-linear block-wise relationships among continuous and/or categorical data. We optimized and evaluated HAllA using heterogeneous synthetic datasets of known association structure, where HAllA outperformed all-against-all and other block testing approaches across a range of common similarity measures. We then applied HAllA to a series of real-world multi-omics datasets, revealing new associations between gene expression and host immune activity, the microbiome and host transcriptome, metabolomic profiling, and human health phenotypes. An open-source implementation of HAllA is freely available at http://huttenhower.sph.harvard.edu/halla along with documentation, demo datasets, and a user group.


Author(s):  
Jun Sun ◽  
Lingchen Kong ◽  
Mei Li

With the development of modern science and technology, it is easy to obtain a large number of high-dimensional datasets, which are related but different. Classical unimodel analysis is less likely to capture potential links between the different datasets. Recently, a collaborative regression model based on least square (LS) method for this problem has been proposed. In this paper, we propose a robust collaborative regression based on the least absolute deviation (LAD). We give the statistical interpretation of the LS-collaborative regression and LAD-collaborative regression. Then we design an efficient symmetric Gauss–Seidel-based alternating direction method of multipliers algorithm to solve the two models, which has the global convergence and the Q-linear rate of convergence. Finally we report numerical experiments to illustrate the efficiency of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document