chain extension
Recently Published Documents


TOTAL DOCUMENTS

703
(FIVE YEARS 120)

H-INDEX

45
(FIVE YEARS 6)

Author(s):  
Mark A. Nakasone ◽  
Karolina A. Majorek ◽  
Mads Gabrielsen ◽  
Gary J. Sibbet ◽  
Brian O. Smith ◽  
...  

AbstractUbiquitin (Ub) chain types govern distinct biological processes. K48-linked polyUb chains target substrates for proteasomal degradation, but the mechanism of Ub chain synthesis remains elusive due to the transient nature of Ub handover. Here, we present the structure of a chemically trapped complex of the E2 UBE2K covalently linked to donor Ub and acceptor K48-linked di-Ub, primed for K48-linked Ub chain synthesis by a RING E3. The structure reveals the basis for acceptor Ub recognition by UBE2K active site residues and the C-terminal Ub-associated (UBA) domain, to impart K48-linked Ub specificity and catalysis. Furthermore, the structure unveils multiple Ub-binding surfaces on the UBA domain that allow distinct binding modes for K48- and K63-linked Ub chains. This multivalent Ub-binding feature serves to recruit UBE2K to ubiquitinated substrates to overcome weak acceptor Ub affinity and thereby promote chain elongation. These findings elucidate the mechanism of processive K48-linked polyUb chain formation by UBE2K.


2022 ◽  
Author(s):  
Chengqiang Ding ◽  
Zhengbiao Zhang ◽  
zhao wang

A well-controlled piezoelectrically mediated reversible addition-fragmentation chain transfer polymerization (piezo-RAFT) was carried out under ultrasound agitation with piezoelectric ZnO nanoparticles as the mechano-chemical trans-ducer. The resulting polymer had predictable molecular weight, high end-group fidelity, low dispersity, and capacity for chain extension. This chemistry was further adopted in curing composite resins to circumvent the light penetration limit of UV curing. This work opened a new avenue of piezoelectrically mediated chemistry and showed its good potential in curing applications.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Alexey Sivokhin ◽  
Dmitry Orekhov ◽  
Oleg Kazantsev ◽  
Olga Sivokhina ◽  
Sergey Orekhov ◽  
...  

Amphiphilic random and diblock thermoresponsive oligo(ethylene glycol)-based (co)polymers were synthesized via photoiniferter polymerization under visible light using trithiocarbonate as a chain transfer agent. The effect of solvent, light intensity and wavelength on the rate of the process was investigated. It was shown that blue and green LED light could initiate RAFT polymerization of macromonomers without an exogenous initiator at room temperature, giving bottlebrush polymers with low dispersity at sufficiently high conversions achieved in 1–2 h. The pseudo-living mechanism of polymerization and high chain-end fidelity were confirmed by successful chain extension. Thermoresponsive properties of the copolymers in aqueous solutions were studied via turbidimetry and laser light scattering. Random copolymers of methoxy- and alkoxy oligo(ethylene glycol) methacrylates of a specified length formed unimolecular micelles in water with a hydrophobic core consisting of a polymer backbone and alkyl groups and a hydrophilic oligo(ethylene glycol) shell. In contrast, the diblock copolymer formed huge multimolecular micelles.


2021 ◽  
Vol 23 (1) ◽  
pp. 230
Author(s):  
Eva Balint ◽  
Ildiko Unk

DNA polymerase η (Polη) is a translesion synthesis polymerase that can bypass different DNA lesions with varying efficiency and fidelity. Its most well-known function is the error-free bypass of ultraviolet light-induced cyclobutane pyrimidine dimers. The lack of this unique ability in humans leads to the development of a cancer-predisposing disease, the variant form of xeroderma pigmentosum. Human Polη can insert rNTPs during DNA synthesis, though with much lower efficiency than dNTPs, and it can even extend an RNA chain with ribonucleotides. We have previously shown that Mn2+ is a specific activator of the RNA synthetic activity of yeast Polη that increases the efficiency of the reaction by several thousand-fold over Mg2+. In this study, our goal was to investigate the metal cofactor dependence of RNA synthesis by human Polη. We found that out of the investigated metal cations, only Mn2+ supported robust RNA synthesis. Steady state kinetic analysis showed that Mn2+ activated the reaction a thousand-fold compared to Mg2+, even during DNA damage bypass opposite 8-oxoG and TT dimer. Our results revealed a two order of magnitude higher affinity of human Polη towards ribonucleotides in the presence of Mn2+ compared to Mg2+. It is noteworthy that activation occurred without lowering the base selectivity of the enzyme on undamaged templates, whereas the fidelity decreased across a TT dimer. In summary, our data strongly suggest that, like with its yeast homolog, Mn2+ is the proper metal cofactor of hPolη during RNA chain extension, and selective metal cofactor utilization contributes to switching between its DNA and RNA synthetic activities.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4330
Author(s):  
Thorben Sören Haubold ◽  
Laura Puchot ◽  
Antoine Adjaoud ◽  
Pierre Verge ◽  
Katharina Koschek

This work explores the strategy of incorporating a highly substituted reactive flame retardant into a benzoxazine moiety. For this purpose, a DOPO-based flame retardant received a chain extension via reaction with ethylene carbonate. It was then reacted with phloretic acid to obtain a diphenol end-capped molecule, and further reacted with furfurylamine and paraformaldehyde to obtain a benzoxazine monomer via a Mannich-like ring closure reaction. This four-step synthesis yielded a partly bio-based halogen-free flame retardant benzoxazine monomer (DOPO-PA-fa). The successful synthesis was proven via NMR, IR and MS analysis. The polymerization behavior was monitored by DSC and rheological analysis both showing the polymerization starts at 200 °C to yield pDOPO-PA-fa. pDOPO-PA-fa has a significant thermal stability with a residual mass of 30% at 800 °C under ambient atmosphere. Furthermore, it reached a V-0 rating against small flames and an OI of 35%. Blended with other benzoxazines, it significantly improves their thermal stability and fire resistance. It emphasizes its potential as flame retardant agent.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guoqiong Long ◽  
Chong Li ◽  
Shuai Li ◽  
Tianxiang Xu

Servitization is an important trend in the transformation and upgrading of the manufacturing industry, but whether it can significantly improve enterprise performance is the key to the transformation. Based on the sample of Chinese A-share listed companies from 2011 to 2019, we analyze the business scope of 2502 annual reports to identify the service level of consumer goods manufacturing enterprises. The results show the following. (1) The “service performance” curve shows obvious nonlinear trends and heterogeneity in different industries and different performance conditions. The curve between servitization and return on assets tends to show a positive “U” shape, but the relationship between servitization and revenue per employee obviously shows an inverted “U” shape. (2) Manufacturing enterprises with relatively low technical complexity and relatively high industry competition will reach the inflection point of service performance “U” curve more quickly and get rid of “service trap” more easily. (3) The automobile manufacturing industry invests in software development and other fields that are not related to its own advantages, which violates the correlation law of the industrial value chain, leading to the coexistence of “service trap” and “principle-agent dilemma.” The clothing and electrical appliances industries are more likely to fall into the “service trap” because they face the challenge of “Internet + manufacturing” transformation. The beverage and wine manufacturing industry has induced a “service spillover” effect, which is mainly due to its low technical complexity and service based on the industrial chain. It is proposed that manufacturing enterprises explore business growth points from the perspective of industrial value chain extension and strengthen upstream product R&D and terminal e-commerce services.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3531
Author(s):  
María Virginia Candal ◽  
Maryam Safari ◽  
Mercedes Fernández ◽  
Itziar Otaegi ◽  
Agurtzane Múgica ◽  
...  

The recyclability of opaque PET, which contains TiO2 nanoparticles, has not been as well-studied as that of transparent PET. The objective of this work is to recycle post-consumer opaque PET through reactive extrusion with Joncryl. The effect of the reactive extrusion process on the molecular structure and on the thermal/mechanical/rheological properties of recycling post-consumer opaque PET (r-PET) has been analyzed. A 1% w/w Joncryl addition caused a moderate increase in the molecular weight. A moderate increase in chain length could not explain a decrease in the overall crystallization rate. This result is probably due to the presence of branches interrupting the crystallizable sequences in reactive extruded r-PET (REX-r-PET). A rheological investigation performed by SAOS/LAOS/elongational studies detected important structural modifications in REX-r-PET with respect to linear r-PET or a reference virgin PET. REX-r-PET is characterized by a slow relaxation process with enlarged elastic behaviors that are characteristic of a long-chain branched material. The mechanical properties of REX-r-PET increased because of the addition of the chain extender without a significant loss of elongation at the break. The reactive extrusion process is a suitable way to recycle opaque PET into a material with enhanced rheological properties (thanks to the production of a chain extension and long-chain branches) with mechanical properties that are comparable to those of a typical virgin PET sample.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanongsak Chaiyaso ◽  
Pornchai Rachtanapun ◽  
Nanthicha Thajai ◽  
Krittameth Kiattipornpithak ◽  
Pensak Jantrawut ◽  
...  

AbstractCassava starch was blended with glycerol to prepare thermoplastic starch (TPS). Thermoplastic starch was premixed with sericin (TPSS) by solution mixing and then melt-blended with polyethylene grafted maleic anhydride (PEMAH). The effect of sericin on the mechanical properties, morphology, thermal properties, rheology, and reaction mechanism was investigated. The tensile strength and elongation at break of the TPSS10/PEMAH blend were improved to 12.2 MPa and 100.4%, respectively. The TPS/PEMAH morphology presented polyethylene grafted maleic anhydride particles (2 μm) dispersed in the thermoplastic starch matrix, which decreased in size to approximately 200 nm when 5% sericin was used. The melting temperature of polyethylene grafted maleic anhydride (121 °C) decreased to 111 °C because of the small crystal size of the polyethylene grafted maleic anhydride phase. The viscosity of TPS/PEMAH increased with increasing sericin content because of the chain extension. Fourier-transform infrared spectroscopy confirmed the reaction between the amino groups of sericin and the maleic anhydride groups of polyethylene grafted maleic anhydride. This reaction reduced the interfacial tension between thermoplastic starch and polyethylene grafted maleic anhydride, which improved the compatibility, mechanical properties, and morphology of the blend.


Sign in / Sign up

Export Citation Format

Share Document