structural inheritance
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 45)

H-INDEX

19
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Frank Zwaan ◽  
Pauline Chenin ◽  
Duncan Erratt ◽  
Gianreto Manatschal ◽  
Guido Scheurs

2021 ◽  
pp. jgs2021-066
Author(s):  
A. Tamas ◽  
R.E. Holdsworth ◽  
J.R. Underhill ◽  
D.M. Tamas ◽  
E.D. Dempsey ◽  
...  

The Inner Moray Firth Basin (IMFB) forms the western arm of the North Sea trilete rift system that initiated mainly during the Late Jurassic-Early Cretaceous with the widespread development of major NE-SW-trending dip-slip growth faults. The IMFB is superimposed over the southern part of the older Devonian Orcadian Basin. The potential influence of older rift-related faults on the kinematics of later Mesozoic basin opening has received little attention, partly due to the poor resolution of offshore seismic reflection data at depth. New field observations augmented by drone photography and photogrammetry, coupled with U-Pb geochronology have been used to explore the kinematic history of faulting in onshore exposures along the southern IMFB margin. Dip-slip N-S to NNE-SSW-striking Devonian growth faults are recognised that have undergone later dextral reactivation during NNW-SSE extension. The U-Pb calcite dating of a sample from the syn-kinematic calcite veins associated with this later episode shows that the age of fault reactivation is 131.73 ± 3.07 Ma (Hauterivian). The recognition of dextral-oblique Early Cretaceous reactivation of faults related to the underlying and older Orcadian Basin highlights the importance of structural inheritance in controlling basin- to sub-basin-scale architectures and how this influences the kinematics of IMFB rifting.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5635432


2021 ◽  
Vol 9 ◽  
Author(s):  
Folarin Kolawole ◽  
Thomas B. Phillips ◽  
Estella A. Atekwana ◽  
Christopher A.-L. Jackson

Little is known about rift kinematics and strain distribution during the earliest phase of extension due to the deep burial of the pre-rift and earliest rift structures beneath younger, rift-related deposits. Yet, this exact phase of basin development ultimately sets the stage for the location of continental plate divergence and breakup. Here, we investigate the structure and strain distribution in the multiphase Late Paleozoic-Cenozoic magma-poor Rukwa Rift, East Africa during the earliest phase of extension. We utilize aeromagnetic data that image the Precambrian Chisi Shear Zone (CSZ) and bounding terranes, and interpretations of 2-D seismic reflection data to show that, during the earliest rift phase (Permo-Triassic ‘Karoo’): 1) the rift was defined by the Lupa border fault, which exploited colinear basement terrane boundaries, and a prominent intra-basinal fault cluster (329° ± 9.6) that trends parallel to and whose location was controlled by the CSZ (326°); 2) extensional strain in the NW section of the rift was accommodated by both the intra-basinal fault cluster and the border fault, where the intra-basinal faulting account for up to 64% of extension; in the SE where the CSZ is absent, strain is primarily focused on the Lupa Fault. Here, the early-rift strain is thus, not accommodated only by border the fault as suggested by existing magma-poor early-rift models; instead, strain focuses relatively quickly on a large border fault and intra-basinal fault clusters that follow pre-existing intra-basement structures; 3) two styles of early-rift strain localization are evident, in which strain is localized onto a narrow discrete zone of basement weakness in the form of a large rift fault (Style-1 localization), and onto a broader discrete zone of basement weakness in the form of a fault cluster (Style-2 localization). We argue that the CSZ and adjacent terrane boundaries represent zones of mechanical weakness that controlled the first-order strain distribution and rift development during the earliest phase of extension. The established early-rift structure, modulated by structural inheritance, then persisted through the subsequent rift phases. The results of our study, in a juvenile and relatively well-exposed and data-rich rift, are applicable to understanding the structural evolution of deeper, buried ancient rifts.


2021 ◽  
Author(s):  
Frank Zwaan ◽  
Pauline Chenin ◽  
Duncan Erratt ◽  
Gianreto Manatschal ◽  
Guido Schreurs

The competition between the impact of inherited weaknesses and plate kinematics determines the location and style of deformation during rifting, yet the relative impacts of these “internal” and “external” factors remain poorly understood, especially in 3D. In this study we used brittle-viscous analogue models to assess how multiphase rifting, i.e., changes in plate divergence rate or direction, and the distribution of weaknesses in the competent mantle and crust influence rift evolution. We find that the combined reactivation of mantle and crustal weaknesses without kinematic changes creates complex rift structures. Divergence rates affects the strength of the weak lower crustal layer and hence the degree of mantle-crustal coupling. In this context slow rifting decreases coupling, so that crustal weaknesses can easily localize deformation and dominate surface structures, whereas fast rifting increases coupling so that deformation related to mantle weaknesses can have a dominant surface expression. Through a change from slow to fast rifting mantle-related deformation can overprint previous structures that formed along (differently oriented) crustal weaknesses. Conversely, a change from fast to slow rifting may shift deformation from mantle-controlled towards crust-controlled. When changing divergence directions, structures from the first rifting phase may control where subsequent deformation occurs, but only when they are well developed. Alternatively, they are ignored during subsequent rifting. We furthermore place our results in a larger framework of brittle-viscous rift modelling results from previous experimental studies, showing the importance of genral lithospheric layering, divergence rate, the type of deformation in the mantle, and finally upper crustal structural inheritance. The interaction between these parameters can lead to a large variety of deformation styles that may often lead to comparable end products. Therefore, detailed investigation of faulting and to an equal extent basin depocenter distribution over time is required to properly determine the evolution of complex rift systems. These insights provide a strong incentive to revisit various natural examples.


2021 ◽  
Author(s):  
Michael J. Duvall ◽  
John W.F. Waldron ◽  
Laurent Godin ◽  
Yani Najman ◽  
Alex Copley

Sign in / Sign up

Export Citation Format

Share Document