high mobility group protein
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 62)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Alexander Bizjak ◽  
Gunnar Treff ◽  
Martina Zügel ◽  
Uwe Schumann ◽  
Kay Winkert ◽  
...  

Background: Metabolic stress is high during training and competition of Olympic rowers, but there is a lack of biomedical markers allowing to quantify training load on the molecular level. We aimed to identify such markers applying a complex approach involving inflammatory and immunologic variables.Methods: Eleven international elite male rowers (age 22.7 ± 2.4 yrs.; VO2max 71 ± 5 ml·min−1·kg−1) of the German National Rowing team were monitored at competition phase (COMP) vs. preparation phase (PREP), representing high vs. low load. Perceived stress and recovery were assessed by a Recovery Stress Questionnaire for Athletes (RESTQ-76 Sport). Immune cell activation (dendritic cell (DC)/macrophage/monocytes/T-cells) was evaluated via fluorescent activated cell sorting. Cytokines, High-Mobility Group Protein B1 (HMGB1), cell-free DNA (cfDNA), creatine kinase (CK), uric acid (UA), and kynurenine (KYN) were measured in venous blood.Results: Rowers experienced more general stress and less recovery during COMP, but sports-related stress and recovery did not differ from PREP. During COMP, DC/macrophage/monocyte and T-regulatory cells (Treg-cell) increased (p = 0.001 and 0.010). HMGB1 and cfDNA increased in most athletes during COMP (p = 0.001 and 0.048), while CK, UA, and KYN remained unaltered (p = 0.053, 0.304, and 0.211). Pro-inflammatory cytokines IL-1β (p = 0.002), TNF-α (p < 0.001), and the chemokine IL-8 (p = 0.001) were elevated during COMP, while anti-inflammatory Il-10 was lower (p = 0.002).Conclusion: COMP resulted in an increase in biomarkers reflecting tissue damage, with plausible evidence of immune cell activation that appeared to be compensated by anti-inflammatory mechanisms, such as Treg-cell proliferation. We suggest an anti-inflammatory and immunological matrix approach to optimize training load quantification in elite athletes.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Dan-Dan Liu ◽  
Piao Luo ◽  
Liwei Gu ◽  
Qian Zhang ◽  
Peng Gao ◽  
...  

Abstract Background Celastrol (cel) was one of the earliest isolated and identified chemical constituents of Tripterygium wilfordii Hook. f. Based on a cel probe (cel-p) that maintained the bioactivity of the parent compound, the targets of cel in cerebral ischemia–reperfusion (I/R) injury were comprehensively analyzed by a quantitative chemical proteomics method. Methods We constructed an oxygen–glucose deprivation (OGD) model in primary rat cortical neurons and a middle cerebral artery occlusion (MCAO) model in adult rats to detect the direct binding targets of cel in cerebral I/R. By combining various experimental methods, including tandem mass tag (TMT) labeling, mass spectrometry, and cellular thermal shift assay (CETSA), we revealed the targets to which cel directly bound to exert neuroprotective effects. Results We found that cel inhibited the proinflammatory activity of high mobility group protein 1 (HMGB1) by directly binding to it and then blocking the binding of HMGB1 to its inflammatory receptors in the microenvironment of ischemia and hypoxia. In addition, cel rescued neurons from OGD injury in vitro and decreased cerebral infarction in vivo by targeting HSP70 and NF-κB p65. Conclusion Cel exhibited neuroprotective and anti-inflammatory effects by targeting HSP70 and NF-κB p65 and directly binding to HMGB1 in cerebral I/R injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Xu ◽  
Shoujun Chen ◽  
Tianfei Li ◽  
Shunwu Yu ◽  
Hui Zhao ◽  
...  

Drought stress adversely affects crop growth and productivity worldwide. In response, plants have evolved several strategies in which numerous genes are induced to counter stress. High mobility group (HMG) proteins are the second most abundant family of chromosomal proteins. They play a crucial role in gene transcriptional regulation by modulating the chromatin/DNA structure. In this study, we isolated a novel HMG gene, OsHMGB707, one of the candidate genes localized in the quantitative trait loci (QTL) interval of rice drought tolerance, and examined its function on rice stress tolerance. The expression of OsHMGB707 was up-regulated by dehydration and high salt treatment. Its overexpression significantly enhanced drought tolerance in transgenic rice plants, whereas its knockdown through RNA interference (RNAi) did not affect the drought tolerance of the transgenic rice plants. Notably, OsHMGB707-GFP is localized in the cell nucleus, and OsHMGB707 is protein-bound to the synthetic four-way junction DNA. Several genes were up-regulated in OsHMGB707-overexpression (OE) rice lines compared to the wild-type rice varieties. Some of the genes encode stress-related proteins (e.g., DREB transcription factors, heat shock protein 20, and heat shock protein DnaJ). In summary, OsHMGB707 encodes a stress-responsive high mobility group protein and regulates rice drought tolerance by promoting the expression of stress-related genes.


2021 ◽  
Vol 22 (15) ◽  
pp. 8057
Author(s):  
Seyeon Oh ◽  
Jinyoung Yang ◽  
Chulhyun Park ◽  
Kukhui Son ◽  
Kyunghee Byun

Dexamethasone (Dexa), frequently used as an anti-inflammatory agent, paradoxically leads to muscle inflammation and muscle atrophy. Receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) lead to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome formation through nuclear factor-κB (NF-κB) upregulation. NLRP3 inflammasome results in pyroptosis and is associated with the Murf-1 and atrogin-1 upregulation involved in protein degradation and muscle atrophy. The effects of Ecklonia cava extract (ECE) and dieckol (DK) on attenuating Dexa-induced muscle atrophy were evaluated by decreasing NLRP3 inflammasome formation in the muscles of Dexa-treated animals. The binding of AGE or high mobility group protein 1 to RAGE or TLR4 was increased by Dexa but significantly decreased by ECE or DK. The downstream signaling pathways of RAGE (c-Jun N-terminal kinase or p38) were increased by Dexa but decreased by ECE or DK. NF-κB, downstream of RAGE or TLR4, was increased by Dexa but decreased by ECE or DK. The NLRP3 inflammasome component (NLRP3 and apoptosis-associated speck-like), cleaved caspase -1, and cleaved gasdermin D, markers of pyroptosis, were increased by Dexa but decreased by ECE and DK. Interleukin-1β/Murf-1/atrogin-1 expression was increased by Dexa but restored by ECE or DK. The mean muscle fiber cross-sectional area and grip strength were decreased by Dexa but restored by ECE or DK. In conclusion, ECE or DK attenuated Dexa-induced muscle atrophy by decreasing NLRP3 inflammasome formation and pyroptosis.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sijie Dai ◽  
Yang Zheng ◽  
Yi Wang ◽  
Zhong Chen

AbstractEpilepsy is a common neurological disease caused by synchronous firing of hyperexcitable neurons. Currently, anti-epileptic drugs remain the main choice to control seizure, but 30% of patients are resistant to the drugs, which calls for more research on new promising targets. Neuroinflammation is closely associated with the development of epilepsy. As an important inflammatory factor, high mobility group protein B1 (HMGB1) has shown elevated expression and an increased proportion of translocation from the nucleus to the cytoplasm in patients with epilepsy and in multiple animal models of epilepsy. HMGB1 can act on downstream receptors such as Toll-like receptor 4 and receptor for advanced glycation end products, thereby activating interleukin (IL)-1β and nuclear factor kappa-B (NF-κB), which in turn act with glutamate receptors such as the N-methyl-D-aspartate (NMDA) receptors to aggravate hyperexcitability and epilepsy. The hyperexcitability can in turn stimulate the expression and translocation of HMGB1. Blocking HMGB1 and its downstream signaling pathways may be a direction for antiepileptic drug therapy. Here, we review the changes of HMGB1-related pathway in epileptic brains and its role in the modulation of neuronal excitability and epileptic seizure. Furthermore, we discuss the potentials of HMGB1 as a therapeutic target for epilepsy and provide perspective on future research on the role of HMGB1 signaling in epilepsy.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 822
Author(s):  
Keiichi Matsubara ◽  
Yuko Matsubara ◽  
Yuka Uchikura ◽  
Katsuko Takagi ◽  
Akiko Yano ◽  
...  

Preeclampsia (PE) is a serious disease that can be fatal for the mother and fetus. The two-stage theory has been proposed as its cause, with the first stage comprising poor placentation associated with the failure of fertilized egg implantation. Successful implantation and placentation require maternal immunotolerance of the fertilized egg as a semi-allograft and appropriate extravillous trophoblast (EVT) invasion of the decidua and myometrium. The disturbance of EVT invasion during implantation in PE results in impaired spiral artery remodeling. PE is thought to be caused by hypoxia during remodeling failure–derived poor placentation, which results in chronic inflammation. High-mobility group protein A (HMGA) is involved in the growth and invasion of cancer cells and likely in the growth and invasion of trophoblasts. Its mechanism of action is associated with immunotolerance. Thus, HMGA is thought to play a pivotal role in successful pregnancy, and its dysfunction may be related to the pathogenesis of PE. The evaluation of HMGA function and its changes in PE might confirm that it is a reliable biomarker of PE and provide prospects for PE treatment through the induction of EVT proliferation and invasion during the implantation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yihua Piao ◽  
Jingzhi Jiang ◽  
Zhiguang Wang ◽  
Chongyang Wang ◽  
Shan Jin ◽  
...  

Glaucocalyxin A (GLA) has various pharmacological effects like antioxidation, immune regulation, and antiatherosclerosis. Here, in this study, the effect and mechanism of GLA on mast cell degranulation were studied. The results of the anti-DNP IgE-mediated passive cutaneous anaphylaxis (PCA) showed that GLA dramatically inhibited PCA in vivo, as evidenced by reduced Evans blue extravasation and decreased ear thickness. In addition, GLA significantly reduced the release of histamine and β-hexosaminidase, calcium influx, cytokine (IL-4, TNF-α, IL-1β, IL-13, and IL-8) production in the RBL-2H3 (rat basophilic leukemia cells), and RPMCs (peritoneal mast cells) in vitro. Moreover, we further investigated the regulatory mechanism of GLA on antigen-induced mast cells by Western blot, which showed that GLA inhibited FcεRI-mediated signal transduction and invalidated the phosphorylation of Syk, Fyn, Lyn, Gab2, and PLC-γ1. In addition, GLA inhibited the recombinant mouse high mobility group protein B1- (HMGB1-) induced mast cell degranulation through limiting nuclear translocation of NF-κBp65. Treatment of mast cells with siRNA-HMGB1 significantly inhibited HMGB1 levels, as well as MyD88 and TLR4, decreased intracellular calcium levels, and suppressed the release of β-hexosaminidase. Meanwhile, GLA increased NrF2 and HO-1 levels by activating p38MAPK phosphorylation. Consequently, these data suggest that GLA regulates the NrF2/HO-1 signaling pathway through p38MAPK phosphorylation and inhibits HMGB1/TLR4/NF-κB signaling pathway to reduce mast cell degranulation and allergic inflammation. Our findings could be used as a promising therapeutic drug against allergic inflammatory disease.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1044
Author(s):  
Yun Ge ◽  
Man Huang ◽  
Yong-ming Yao

High mobility group box-1 protein (HMGB1), a member of the high mobility group protein superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells, contributing to the excessive release of inflammatory cytokines and promoting processes such as cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern molecule that participates in various inflammatory and immune responses. In these ways, it plays a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects of HMGB1 on various immune cell types and describe the molecular mechanisms by which it contributes to the development of inflammatory disorders. Finally, we address the therapeutic potential of targeting HMGB1.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Binbin Lu ◽  
Meng Liu ◽  
Liang Gu ◽  
Ying Li ◽  
Shijun Shen ◽  
...  

ABSTRACT The three-dimensional (3D) genome organization plays a critical role in the regulation of gene expression in eukaryotic organisms. In the unicellular malaria parasite Plasmodium falciparum, the high-order chromosome organization has emerged as an important epigenetic pathway mediating gene expression, particularly for virulence genes, but the related architectural factors and underlying mechanism remain elusive. Herein, we have identified the high-mobility-group protein HMGB1 as a critical architectural factor for maintenance of genome organization in P. falciparum. Genome-wide occupancy analysis (chromatin immunoprecipitation sequencing [ChIP-seq]) shows that the HMGB1 protein is recruited mainly to centromeric regions likely via a DNA-binding-independent pathway. Chromosome conformation capture coupled with next-generation sequencing (Hi-C-seq) and 3D modeling analysis show that the loss of HMGB1 disrupts the integrity of centromere/telomere-based chromosome organization accompanied with diminished interaction frequency among centromere clusters. This triggers local chromatin alteration and dysregulated gene expression. Notably, the entire repertoire of the primary virulence genes (var) was completely silenced in the absence of P. falciparum HMGB1 (PfHMGB1). Furthermore, the disrupted nuclear organization was reconstituted by complementation of HMGB1, thereby rescuing the mutually exclusive expression of the var gene family. Collectively, these data demonstrate that the architectural factor HMGB1 is associated with gene expression via mediating the high-order structure of genome organization. This finding not only contributes better understanding of the epigenetic regulation of gene expression but may also provide novel targets for antimalarial strategies. IMPORTANCE Malaria remains a major public health and economic burden currently. The mutually exclusive expression of the virulence genes is associated with the pathogenesis and immune evasion of human malaria parasites in the host. The nuclear architecture provides a well-organized environment for differential gene expression in the nucleus, but the underlying mechanism remains largely unknown. In this study, we have identified the highly conserved high-mobility-group protein HMGB1 as a key architecture regulator involved in virulence gene expression by establishing high-order genome organization in the nucleus of P. falciparum. Mechanistic investigation revealed that the specific interaction of HMGB1 and centromeres constructed the precisely organized nuclear architecture, which coordinated with local chromatin structure to control the singular expression of virulence genes. Hence, this protein appears to be a critical architectural regulator for the pathogenesis of malaria infection and may be a new target for the development of an intervention strategy against malaria.


Sign in / Sign up

Export Citation Format

Share Document