embedment depth
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 77)

H-INDEX

15
(FIVE YEARS 2)

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Oleg Kabantsev ◽  
Mikhail Kovalev

The article addresses mechanisms of anchorage failure in a concrete base studied within the framework of physical experiments. The authors investigated the most frequently used types of anchors, such as the cast-in-place and post-installed ones. The anchorages were studied under static and dynamic loading, similar to the seismic type. During the experiments, the post-earthquake condition of a concrete base was simulated. Within the framework of the study, the authors modified the values of such parameters, such as the anchor embedment depth, anchor steel strength, base concrete class, and base crack width. As a result of the experimental studies, the authors identified all possible failure mechanisms for versatile types of anchorages, including steel and concrete cone failures, anchor slippage at the interface with the base concrete (two types of failure mechanisms were identified), as well as the failure involving the slippage of the adhesive composition at the interface with the concrete of the anchor embedment area. The data obtained by the authors encompasses total displacements in the elastic and plastic phases of deformation, values of the bearing capacity for each type of anchorage, values of the bearing capacity reduction, and displacements following multi-cyclic loading compared to static loading. As a result of the research, the authors identified two types of patterns that anchorages follow approaching the limit state: elastic-brittle and elastoplastic mechanisms. The findings of the experimental research allowed the authors to determine the plasticity coefficients for the studied types of anchors and different failure mechanisms. The research findings can be used to justify seismic load reduction factors to be further used in the seismic design of anchorages.


2022 ◽  
Vol 12 (2) ◽  
pp. 654
Author(s):  
Eliass El Alami ◽  
Fatima-Ezzahra Fekak ◽  
Luigi Garibaldi ◽  
Hassane Moustabchir ◽  
Ahmed Elkhalfi ◽  
...  

The corrosion of rebars in reinforced concrete structures impacts their geometry (diameter and ribs) and mass, damages the concrete at the interface between the two materials, deteriorates the bond strength, and causes the cracking of the concrete cover. In the following study, a 2D numerical model of the pull-out test is presented in order to study the impact of corrosion on the bond strength. Several parameters are investigated: the embedment depth, the rebar’s diameter, and the width of the concrete cover. The model reproduces the slip of the rebar and the failure through the splitting of concrete. It integrates an interface between the two materials and a concrete damage model that simulate the deterioration of concrete in compression and tension. The results obtained are validated with experimental data from the literature. Moreover, a parametric study is carried out to determine the impact of the embedment depth, the diameter of the rebar, and the concrete cover on the bond strength. The present study confirms that a greater embedment depth increases the pulling load. The study also confirms that the rebar’s diameter impacts highly the loss of bond between the rebar and the concrete cover. Lastly, the final main result of this paper is that the width of the concrete cover slows the loss of bond strength between the two materials.


2021 ◽  
Author(s):  
Jin-Seok Choi ◽  
Won Jong Chin ◽  
Tian-Feng Yuan ◽  
Young-Soo Yoon

Abstract A bridge bearing anchor transmits various loads of a superstructure to a substructure. However, most anchors are generally designed without consideration of characteristics such as concrete pedestal, grout bedding, and anchor socket. Therefore, this study investigated the shear behavior of anchors in accordance with the edge distance, embedment depth, compressive strength of concrete, and height of the concrete pedestal in order to simulate the practical characteristics of the bridge bearing anchors. The actual shear capacity of the anchor differs from the shear strength calculated by the ACI 318 Code; especially, the importance of the embedment depth is underestimated in the code. An increase in the height of the concrete pedestal has a negative effect on the shear capacity because of the stress concentration. The grout is fractured prior to the occurrence of local damages in concrete, resulting in a secondary moment. As a result, the effect of the level arm is observed. An equation, which can predict the relative cracking degree of concrete, is proposed by analyzing the displacement of grout and concrete. High strain occurs in the stirrups close to the anchor, and the behavior of the strain is more influenced by the embedment depth than the edge distance. Finally, the design equation of concrete breakout strength is modified to predict the more precise shear resistance of a bridge bearing anchor.


2021 ◽  
Vol 8 (1-2) ◽  
pp. 58-65
Author(s):  
Filip Dodigović ◽  
Krešo Ivandić ◽  
Jasmin Jug ◽  
Krešimir Agnezović

The paper investigates the possibility of applying the genetic algorithm NSGA-II to optimize a reinforced concrete retaining wall embedded in saturated silty sand. Multi-objective constrained optimization was performed to minimize the cost, while maximizing the overdesign factors (ODF) against sliding, overturning, and soil bearing resistance. For a given change in ground elevation of 5.0 m, the width of the foundation and the embedment depth were optimized. Comparing the algorithm's performance in the cases of two-objective and three objective optimizations showed that the number of objectives significantly affects its convergence rate. It was also found that the verification of the wall against the sliding yields a lower ODF value than verifications against overturning and soil bearing capacity. Because of that, it is possible to exclude them from the definition of optimization problem. The application of the NSGA-II algorithm has been demonstrated to be an effective tool for determining the set of optimal retaining wall designs.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012012
Author(s):  
J Jonak ◽  
R Karpiński ◽  
A Wójcik

Abstract This paper presents the results of a numerical FEM analysis of the effect of embedment depth on the extent of the failure zone (cone failure) under the effect of an undercut anchor. For the establishment of the other affecting quantities, the formation of the value of the cone failure angle of the rock medium depending on the embedment depth was analysed. The problem is interesting as regards aspects of rock mass loosening during pull-out of undercut anchors. As a result of the analysis, a significant effect of embedment depth on propagation and the extent of cone failure has been found. The increasing value of embedment depth significantly decreases the extent of the failure zone measured on a free rock surface. The increasing value of cone failure angle limits the potential interaction of failure zones in multi-anchor systems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zengzhen Qian ◽  
Mingqiang Sheng ◽  
Faming Huang ◽  
Xianlong Lu

Comparative pullout tests were carried out on model plate anchors in uncemented aeolian sand (UAS) and cement-stabilised aeolian sand (CAS) with different embedment ratios of the embedment depth (H) to the width (D) of the plate to examine the effectiveness of the insertion of cement in aeolian sand to enhance the uplift performance of plate anchors. Experimental results demonstrated that significant increases in failure resistance and uplift stiffness can be achieved, irrespective of embedment ratios of H/D, when a relatively small amount of cement (an optimal cement content of 6% by weight of dry aeolian sand determined by direct shear test in this study) was added to the aeolian sand backfill. However, distinct load–displacement responses were observed in all the tests on the model plate anchors embedded in CAS and UAS backfills: two-phase of pre-peak and post-peak behaviour in CAS and three-phase of initial linear, nonlinear transition to peak uplift resistance, and post-peak behaviour in UAS; failure of the former started at tiny displacements and that of the latter appeared at large displacements. Therefore, the significant increases in uplift failure resistance and pre-peak uplift stiffness were limited to relatively low uplift displacements because of the brittle nature of the improved CAS backfills shear strength characteristics.


2021 ◽  
Vol 237 ◽  
pp. 109643
Author(s):  
Vicent Ssenyondo ◽  
Seongho Hong ◽  
Taeho Bong ◽  
Sung-Ryul Kim

2021 ◽  
Vol 11 (18) ◽  
pp. 8526
Author(s):  
Chi Lu ◽  
Yoshimi Sonoda

As an important method for connecting structural members, anchor bolts have been installed in many situations. Therefore, accurate evaluation of the pull-out strength of anchor bolts has always been an important issue, considering the complicated actual installation conditions and the problem of aging deterioration of the structural members. In general, the patterns of pull-out failure of anchor bolts can be classified into three types: adhesion failure, cone failure, and bolt break. However, it sometimes shows a mixed fracture pattern, and it is not always easy to predict the accurate pull-out strength. In this study, we attempted to evaluate the pull-out strength of anchor bolts under various installation conditions using SPH, which can analyze the crack growth process in the concrete. In particular, the anchor bolt-concrete interface model was introduced to SPH analysis in order to consider the bond failure, and it was confirmed that various failure patterns and the load capacity could be predicted by proposed SPH method. After that, the influence of several parameters, such as bond stress limit, anchor bolt diameter, and the anchor bolt embedment depth on the failure patterns and the load capacity, were investigated by numerical calculation. Furthermore, several useful suggestions on the pull-out strength of anchor bolts under improper installation conditions, such as the ends of members for the purpose of seismic retrofitting, are presented.


2021 ◽  
Vol 31 (3) ◽  
pp. 152-176
Author(s):  
Priyanka Rawat ◽  
Rakesh Kumar Dutta

Abstract The aim of the present numerical study was to analyse the pressure settlement behaviour and bearing capacity of asymmetric plus shaped footing resting on loose sand overlying dense sand at varying embedment depth. The numerical investigation was carried out using ABAQUS software. The effect of depth of embedment, friction angle of upper loose and lower dense sand layer and thickness of upper loose sand on the bearing capacity of the asymmetric plus shaped footing was studied in this investigation. Further, the comparison of the results of the bearing capacity was made between the asymmetric and symmetric plus shaped footing. The results reveal that with increase in depth of embedment, the dimensionless bearing capacity of the footings increased. The highest increase in the dimensionless bearing capacity was observed at embedment ratio of 1.5. The increase in the bearing capacity was 12.62 and 11.40 times with respect to the surface footings F1 and F2 corresponding to a thickness ratio of 1.5. The lowest increase in the dimensionless bearing capacity was observed at embedment ratio of 0.1 and the corresponding increase in the bearing capacity was 1.05 and 1.02 times with respect to the surface footing for footings F1 and F2 at a thickness ratio of 1.5.


2021 ◽  
Vol 9 (5A) ◽  
pp. 1-9
Author(s):  
M. M. Nujid ◽  
J. Idrus ◽  
N. F. Bawadi ◽  
A. A. Firoozi

Sign in / Sign up

Export Citation Format

Share Document