meiotic prophase
Recently Published Documents


TOTAL DOCUMENTS

609
(FIVE YEARS 73)

H-INDEX

62
(FIVE YEARS 5)

2021 ◽  
Author(s):  
David Rodriguez-Crespo ◽  
Magali Nanchen ◽  
Shweta Rajopadhye ◽  
Chantal Wicky

Specific gene transcriptional programs are required to ensure proper proliferation and differentiation processes underlying the production of specialized cells during development. Gene activity is mainly regulated by the concerted action of transcription factors and chromatin proteins. In the nematode C. elegans, mechanisms that silence improper transcriptional programs in germline and somatic cells have been well studied, however, how are tissue specific sets of genes turned on is less known. LSL-1 is herein defined as a novel crucial transcriptional regulator of germline genes in C. elegans. LSL-1 is first detected in the P4 blastomere and remains present at all stages of germline development, from primordial germ cell proliferation to the end of meiotic prophase. lsl-1 loss-of-function mutants exhibit many defects including meiotic prophase progression delay, a high level of germline apoptosis, and production of almost no functional gametes. Transcriptomic analysis and ChIP-seq data show that LSL-1 binds to promoters and acts as a transcriptional activator of germline genes involved in various processes, including homologous chromosome pairing, recombination, and genome stability. Furthermore, we show that LSL-1 functions by antagonizing the action of the heterochromatin proteins HPL-2/HP1 and LET-418/Mi2 known to be involved in the repression of germline genes in somatic cells. Based on our results, we propose LSL-1 to be a major regulator of the germline transcriptional program during development.


2021 ◽  
Author(s):  
Takeshi Sakuno ◽  
Sanki Tashiro ◽  
Hideki Tanizawa ◽  
Osamu Iwasaki ◽  
Da-Qiao Ding ◽  
...  

During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of the cohesin-dependent axial structure in fission yeast, which forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the central elements. The results demonstrated that Rec8 cohesin is crucial for the formation of the loop-axis structure within the atypical SC. Furthermore, the Rec8-mediated loop-axis structure is formed in the absence of LinEs and provides a structural platform for aligning homologous chromosomes. We also identified a rec8 mutant that lost the ability to assemble the loop-axis structure without losing cohesion. Remarkably, this mutant showed defects in the LinE assembly, resulting in a significant reduction in meiotic recombination. Collectively, our results demonstrate an essential role for the Rec8-dependent loop-axis structure in LinE assembly, facilitating meiotic recombination.


Toxicology ◽  
2021 ◽  
pp. 153061
Author(s):  
Jinxia Zhai ◽  
Wenfeng Geng ◽  
Taifa Zhang ◽  
Yu Wei ◽  
Huan He ◽  
...  

Author(s):  
Tadasu Nozaki ◽  
Frederick Chang ◽  
Beth Weiner ◽  
Nancy Kleckner

Chromosome movement is prominent at mid-meiotic prophase and is proposed to enhance the efficiency and/or stringency of homolog pairing and/or to help prevent or resolve topological entanglements. Here, we combine fluorescent repressor operator system (FROS) labeling with three-dimensional (3D) live-cell imaging at high spatio-temporal resolution to define the detailed kinetics of mid-meiotic prophase motion for a single telomere-proximal locus in budding yeast. Telomere motions can be grouped into three general categories: (i) pauses, in which the telomere “jiggles in place”; (ii) rapid, straight/curvilinear motion which reflects Myo2/actin-mediated transport of the monitored telomere; and (iii) slower directional motions, most of which likely reflect indirectly promoted motion of the monitored telomere in coordination with actin-mediated motion of an unmarked telomere. These and other findings highlight the importance of dynamic assembly/disassembly of telomere/LINC/actin ensembles and also suggest important roles for nuclear envelope deformations promoted by actin-mediated telomere/LINC movement. The presented low-SNR (signal-to-noise ratio) imaging methodology provides opportunities for future exploration of homolog pairing and related phenomena.


Author(s):  
Victor Spangenberg ◽  
Losev Michail ◽  
Volkhin Ilya ◽  
Svetlana Smirnova ◽  
Nikitin Pavel ◽  
...  

Pericentromeric regions of chromosomes enriched in tandemly repeated satellite DNA although representing a significant part of eukaryotic genomes are still understudied mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability and evolution. Thus, the idea of satellite DNA as a junk part of the genome was refuted. Integration of data about molecular composition, chromosome behaviour and details of in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions of pericentromeric regions non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between cerntomeric regions of X chromosome and autosomes, and associations between centromeric regions of autosomal bivalents forming chromocenters. We conclude that X chromosome form temporary synaptic associations with different autosomes in early meiotic prophase I which normally can be found at pachytene-diplotene without signs of pachytene arrest. These associations are formed between the satellite DNA-enriched centomeric regions of X chromosome and different autosomes but not involve the satellite-poor centromeric region of Y-chromosome. We suggest the mechanism of X chromosome competitive replacement from such associations during synaptic correction. We showed that centromeric region of the X chromosome remains free of γH2Ax-dependent chromatin inactivation, while Y chromosome is completely inactivated. This findings highlights the predominant role of associations between satellite DNA-enriched regions of different chromosomes including X. We assume that X-autosome temporary associations is a manifestation of an additional synaptic disorders checkpoint. These associations are normally corrected before the late diplotene. We revealed that the intense spreading conditions applied to the spermatocytes I nuclei did not lead to destruction of stretched chromatin fibers i.e. elongated chromocenters enriched in satellite DNA. Revealed by us tight associations between pericentromeric regions of different autosomal bivalents and X chromosome may represent the basis for repeat stability maintenance in autosomes an X chromosome. The consequences of our findings are discussed. We obtained the preparations of mouse spermatocytes nuclei in the meiotic prophase I using two approaches: standard and extremely intense surface spread techniques. Using immuno-FISH we visualized tandemly repeated mouse Major and Minor satellite DNA located in the pericentromeric regions of chromosomes and performed a morphological comparison of the standard- and intensely spreaded meiotic nuclei. Based on our results, we assume the remarkable strength of the chromocenter-mediated associations, “chromatin “bridges”, between different bivalents at the pachytene and diplotene stages. We have demonstrated that the chromocenter “bridges” between the centromeric ends of meiotic bivalents are enriched in both tandemly repeated Major and Minor satellite DNA. Association of centromeric regions of autosomal bivalents and X-chromosome but not with Y-chromosome correlates with the absence of Major and Minor satellites on Y-chromosome. We suggest that revealed tight associations between pericentromeric regions of bivalents may represent the network-like system providing dynamic stability of chromosomal territories, as well as add new data for the hypothesis of ectopic recombination in these regions which supports sequence homogeneity between non-homologous chromosomes and does not contradict the meiotic restrictions imposed by the crossing-over interference near centromeres. We conclude that nuclear architecture in meio-sis may play an essential role in contacts between the non-homologous chromosomes providing the specific characteristics of pericentromeric DNA.


2021 ◽  
Author(s):  
Kei-ichiro Ishiguro ◽  
Tanno Nobuhiro ◽  
Kazumasa Takemoto ◽  
Yuki Horisawa-Takada ◽  
Ryuki Shimada ◽  
...  

Meiotic prophase is a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase, homologous chromosomes undergo synapsis to facilitate meiotic recombination yielding crossovers. It remains largely elusive how homolog synapsis is temporally maintained and destabilized during meiotic prophase. Here we show that FBXO47 is the stabilizer of synaptonemal complex during male meiotic prophase. Disruption of FBXO47 shows severe impact on homologous chromosome synapsis and DSB repair processes, leading to male infertility. Notably, in the absence of FBXO47, although once homologous chromosomes are synapsed, the synaptonemal complex is precociously disassembled before progressing beyond pachytene. Remarkably, Fbxo47 KO spermatocytes remain in earlier stage of meiotic prophase and lack crossovers, despite apparently exhibiting diplotene-like chromosome morphology. We propose that FBXO47 functions independently of SCF E3 ligase, and plays a crucial role in preventing synaptonemal complex from premature disassembly during cell cycle progression of meiotic prophase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wu Zuo ◽  
Guangming Chen ◽  
Zhimei Gao ◽  
Shuai Li ◽  
Yanyan Chen ◽  
...  

AbstractDuring meiosis, chromosomes exhibit dramatic changes in morphology and intranuclear positioning. How these changes influence homolog pairing, alignment, and recombination remain elusive. Using Hi-C, we systematically mapped 3D genome architecture throughout all meiotic prophase substages during mouse spermatogenesis. Our data uncover two major chromosome organizational features varying along the chromosome axis during early meiotic prophase, when homolog alignment occurs. First, transcriptionally active and inactive genomic regions form alternating domains consisting of shorter and longer chromatin loops, respectively. Second, the force-transmitting LINC complex promotes the alignment of ends of different chromosomes over a range of up to 20% of chromosome length. Both features correlate with the pattern of homolog interactions and the distribution of recombination events. Collectively, our data reveal the influences of transcription and force on meiotic chromosome structure and suggest chromosome organization may provide an infrastructure for the modulation of meiotic recombination in higher eukaryotes.


2021 ◽  
Vol 25 (4) ◽  
pp. 493-496
Author(s):  
Omokanye Babatunde Sikiru

Meiotic prophase is classically subdivided into five stages: leptotene,  zygotene, pachytene, diplotene, and diakinesis. The objective of this paper is to evaluate the behaviours of Chromosomes in Chlorophytum stenopetalum Bak.at pachytene /diakinesis and metaphase. The flower buds at right age  were harvested, fixed in Cornoy’s solution (3 part of absolute alcohol and 1 part of acetic alcohol) and preserved in a refrigerator at -4°𝐶 for at least thirty minutes. The flower buds were then hydrolyzed in 10% HCl for 3-5 minutes. Prepared slides were viewed using an Armscope microscope equipped with digital automatic camera. At diakinesis seven bivalents (7 II) were   predominantly observed (74.2%). Chromosomal stickiness is quite evidence. In addition, cross configuration and its resultant, ring formation at metaphase indicate the presence of translocation heterozgosity in the chromosomes of the species investigated. These abnormalities are likely to affect  microsporogenesis and pollen viability.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Sarah N. Ur ◽  
Kevin D. Corbett

The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document