linear absorption
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 66)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Callum Gray ◽  
Tiejun Wei ◽  
Tomáš Polívka ◽  
Vangelis Daskalakis ◽  
Christopher D. P. Duffy

Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favors excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD) trajectories about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely its linear absorption (LA), transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII free energy surface. We show that trivial, Coulomb-mediated energy transfer to S1 is an unlikely quenching mechanism, with pigment movements insufficiently pronounced to switch the system between quenched and unquenched states. Modulation of S1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is possibly an artifact of quantum chemical over-estimation of S1 oscillator strength and the real mechanism likely involves short-range interaction and/or non-trivial inter-molecular states.


2022 ◽  
Vol 2155 (1) ◽  
pp. 012029
Author(s):  
Yu A Zaripova ◽  
T M Gladkikh ◽  
M T Bigeldiyeva ◽  
V V Dyachkov ◽  
A V Yushkov

Abstract In this article, the authors propose a new technique for measuring linear attenuation coefficients on the medical linear accelerator Elekta Axesse. Linear attenuation coefficients were obtained for four samples at different concentrations of substances at a gamma-ray energy of 6 MeV. A unified ionization chamber was used as a detector to register the transmitted gamma-ray beam through the samples under study. Linear absorption coefficients were obtained for elements B, C, O, S, Fe, Ba taking into account their concentration, as well as taking into account the different mass inclusion of paraffin in the samples under study, which is acyclic hydrocarbons CnH2n+2. The measurement results showed that taking into account certain components in impurities leads to relatively small, but quite noticeable differences in the determination of the total absorption coefficients. This is especially important to take into account for determining the concentration of light elements in samples. To determine the content of medium and heavy chemical elements, taking into account the content of light elements can be neglected. The use of a 6 MeV gamma-ray beam made it possible to reduce the errors in determining the absorption coefficients, since their dependence on energy in the region of applicable gamma-ray energies is not so great in comparison with the low-energy region, in which the shell effects for heavy elements will introduce significant contribution.


2021 ◽  
Vol 23 (1) ◽  
pp. 313
Author(s):  
Cyrill Slezak ◽  
Roland Rose ◽  
Julia M. Jilge ◽  
Robert Nuster ◽  
David Hercher ◽  
...  

In vitro investigations, which comprise the bulk of research efforts geared at identifying an underlying biomechanical mechanism for extracorporeal shock wave therapy (ESWT), are commonly hampered by inadequate descriptions of the underlying therapeutic acoustical pressure waves. We demonstrate the necessity of in-situ sound pressure measurements inside the treated samples considering the significant differences associated with available applicator technologies and cell containment. A statistical analysis of pulse-to-pulse variability in an electrohydraulic applicator yields a recommendation for a minimal pulse number of n = 300 for cell pallets and suspensions to achieve reproducible treatments. Non-linear absorption behavior of sample holders and boundary effects are shown for transient peak pressures and applied energies and may serve as a guide when in-situ measurements are not available or can be used as a controllable experimental design factor. For the use in microbiological investigations of ESWT we provide actionable identification of common problems in describing physical shockwave parameters and improving experimental setups by; (1) promoting in-situ sound field measurements, (2) statistical evaluation of applicator variability, and (3) extrapolation of treatment parameters based on focal and treatment volumes.


Author(s):  
Heng Lu ◽  
Bing Gu

In this work, the Au@Ag bimetallic core–shell nanostructures were synthesized by a seed-mediated growth. The crystal structure, morphology, elemental composition, atomic concentration, and absorption spectrum of the as-synthesized nanoparticles were characterized by means of X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible linear absorption spectrum, respectively. The femtosecond third-order optical nonlinearities of nanoparticle dispersions were investigated by carrying out the femtosecond-pulsed [Formula: see text]-scan measurements at 800[Formula: see text]nm. The experimental results indicate that Au@Ag core–shell nanoparticles exhibit the positive refractive nonlinearity and negative absorptive nonlinearity. The third-order nonlinear refraction indexes of Au and Au@Ag nanoparticles are measured to be [Formula: see text] and [Formula: see text][Formula: see text]cm2/GW, respectively. The results show that the bimetallic nanoparticle has potential possibility in nonlinear photonic applications.


Author(s):  
Islam M El radaf ◽  
Hnan Y Alzahrani

Abstract We deposited CuGaSnS4 thin films on soda-lima glass substrates via a spray pyrolysis process. The X-ray diffraction of CuGaSnS4 films established the formation of an orthorhombic single phase. In addition, the structural parameters of the CuGaSnS4 films were estimated by Debye-Scherer’s formulas, which showed that an enhancement in crystallite size (D) values occurred by increasing the thickness of the investigated films. The EDAX pattern of CuGaSnS4 films confirms a stoichiometric composition. The optical results revealed that the CuGaSnS4 films possessed a direct optical energy gap (Eg). The Eg values were reduced from 1.50 to 1.38 eV with the increase in thickness. Also, there was an observed increase in the linear refractive index and the linear absorption coefficient values occurred due to the increased thickness. Finally, the optoelectrical constants of the sprayed CuGaSnS4 films such as the optical conductivity (σopt) and the optical free carrier concentration to effective mass (N_opt/m^* ) were enlarged with increasing film thickness. The nonlinear optical study showed that the increase in film thickness enhanced the nonlinear optical constants of CuGaSnS4 films. The hot-probe procedure shows that the sprayed CuGaSnS4 films expose p-type conductivity.


2021 ◽  
Author(s):  
Deeksha Jachpure ◽  
Ramarao Vijaya

Abstract The linear absorption in erbium-doped fiber contributes to its excellent role in erbium-doped fiber amplifiers and lasers. A nonlinear optical contribution in the absorption of erbium-doped fiber is responsible for optical bistable action when it is present in a laser cavity. To quantify this effect, the variation of absorption coefficient is measured at different signal powers at multiple wavelengths in the C-band for different EDF lengths, and saturable absorption parameters such as the saturation power are extracted. Then the modification in the output characteristics of erbium-doped fiber ring laser with change in fiber length and in the presence of self-induced saturable absorption effect within the gain medium which leads to optical bistability is measured. By comparing the measured parameters obtained from saturable absorption in erbium-doped fiber and optical bistability in erbium-doped fiber ring laser, we estimated the length of the gain medium which acts as the saturable absorber inside the cavity of the laser. This is useful in constructing bistable lasers with optimized conditions. The temporal evolution of cavity loss and gain with the intra-cavity power and up- and down-thresholds helps in understanding why the down-threshold will be lesser than the up-threshold in bistable laser systems.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6651
Author(s):  
Daniel L. Farkas

Light is a powerful investigational tool in biomedicine, at all levels of structural organization. Its multitude of features (intensity, wavelength, polarization, interference, coherence, timing, non-linear absorption, and even interactions with itself) able to create contrast, and thus images that detail the makeup and functioning of the living state can and should be combined for maximum effect, especially if one seeks simultaneously high spatiotemporal resolution and discrimination ability within a living organism. The resulting high relevance should be directed towards a better understanding, detection of abnormalities, and ultimately cogent, precise, and effective intervention. The new optical methods and their combinations needed to address modern surgery in the operating room of the future, and major diseases such as cancer and neurodegeneration are reviewed here, with emphasis on our own work and highlighting selected applications focusing on quantitation, early detection, treatment assessment, and clinical relevance, and more generally matching the quality of the optical detection approach to the complexity of the disease. This should provide guidance for future advanced theranostics, emphasizing a tighter coupling—spatially and temporally—between detection, diagnosis, and treatment, in the hope that technologic sophistication such as that of a Mars rover can be translationally deployed in the clinic, for saving and improving lives.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6359
Author(s):  
Subhajit Bej ◽  
Toni Saastamoinen ◽  
Yuri P. Svirko ◽  
Jari Turunen

Nanocomposites, i.e., materials comprising nano-sized entities embedded in a host matrix, can have tailored optical properties with applications in diverse fields such as photovoltaics, bio-sensing, and nonlinear optics. Effective medium approaches such as Maxwell-Garnett and Bruggemann theories, which are conventionally used for modeling the optical properties of nanocomposites, have limitations in terms of the shapes, volume fill fractions, sizes, and types of the nanoentities embedded in the host medium. We demonstrate that grating theory, in particular the Fourier Eigenmode Method, offers a viable alternative. The proposed technique based on grating theory presents nanocomposites as periodic structures composed of unit-cells containing a large and random collection of nanoentities. This approach allows us to include the effects of the finite wavelength of light and calculate the nanocomposite characteristics regardless of the morphology and volume fill fraction of the nano-inclusions. We demonstrate the performance of our approach by calculating the birefringence of porous silicon, linear absorption spectra of silver nanospheres arranged on a glass substrate, and nonlinear absorption spectra for a layer of silver nanorods embedded in a host polymer material having Kerr-type nonlinearity. The developed approach can also be applied to quasi-periodic structures with deterministic randomness or metasurfaces containing a large collection of elements with random arrangements inside their unit cells.


2021 ◽  
Author(s):  
Callum Gray ◽  
Tiejun Wei ◽  
Tomáš Polívka ◽  
Vangelis Daskalakis ◽  
Christopher D. P. Duffy

Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favours excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD trajectories) about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely linear absorption (LA) transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII potential energy surface. We show that trivial, Coulomb-mediated energy transfer to S1 is an unlikely quenching mechanism. Pigment movements are insufficient to switch the system between quenched and unquenched states. Modulation of S1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is likely an artefact of quantum chemical over-estimation of S1 oscillator strength and the real mechanism likely involves non-trivial inter-molecular states.


2021 ◽  
Vol 155 (14) ◽  
pp. 144112
Author(s):  
Angus J. Dunnett ◽  
Duncan Gowland ◽  
Christine M. Isborn ◽  
Alex W. Chin ◽  
Tim J. Zuehlsdorff

Sign in / Sign up

Export Citation Format

Share Document