dirac monopole
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 601
Author(s):  
H. Weisbrich ◽  
M. Bestler ◽  
W. Belzig

Topology in general but also topological objects such as monopoles are a central concept in physics. They are prime examples for the intriguing physics of gauge theories and topological states of matter. Vector monopoles are already frequently discussed such as the well-established Dirac monopole in three dimensions. Less known are tensor monopoles giving rise to tensor gauge fields. Here we report that tensor monopoles can potentially be realized in superconducting multi-terminal systems using the phase differences between superconductors as synthetic dimensions. In a first proposal we suggest a circuit of superconducting islands featuring charge states to realize a tensor monopole. As a second example we propose a triple dot system coupled to multiple superconductors that also gives rise to such a topological structure. All proposals can be implemented with current experimental means and the monopole readily be detected by measuring the quantum geometry.


2021 ◽  
Author(s):  
Gabriel Lugo

Differential Geometry in Physics is a treatment of the mathematical foundations of the theory of general relativity and gauge theory of quantum fields. The material is intended to help bridge the gap that often exists between theoretical physics and applied mathematics. The approach is to carve an optimal path to learning this challenging field by appealing to the much more accessible theory of curves and surfaces. The transition from classical differential geometry as developed by Gauss, Riemann and other giants, to the modern approach, is facilitated by a very intuitive approach that sacrifices some mathematical rigor for the sake of understanding the physics. The book features numerous examples of beautiful curves and surfaces often reflected in nature, plus more advanced computations of trajectory of particles in black holes. Also embedded in the later chapters is a detailed description of the famous Dirac monopole and instantons. Features of this book: * Chapters 1-4 and chapter 5 comprise the content of a one-semester course taught by the author for many years. * The material in the other chapters has served as the foundation for many master’s thesis at University of North Carolina Wilmington for students seeking doctoral degrees. * An open access ebook edition is available at Open UNC (https://openunc.org) * The book contains over 80 illustrations, including a large array of surfaces related to the theory of soliton waves that does not commonly appear in standard mathematical texts on differential geometry.


Author(s):  
Rajan Iyer

This article will continue ansatz gage matrix of Iyer Markoulakis Helmholtz Hamiltonian mechanics points’ fields gage to Pauli Dirac monopole particle fields ansatz gage general formalism at Planck level, by constructing a Pauli Dirac Planck circuit matrix field gradient of particle monopole flow loop. This circuit assembly gage (PDPcag) that maybe operating at the quantum level, demonstrates the power of point fields matrix theoretical quantum general formalism of Iyer Markoulakis Helmholtz Hamiltonian mechanics transformed to Coulomb gage metrics, to form eigenvector fields of magnetic monopoles as well as electron positron particle gage metrics fields. Eigenvector calculations performed based on Iyer Markoulakis quantum general formalism are substituted for gage values of typical eigenvectors of dipolar magnetically biased monopoles with their conjugate eigenvectors, as well as eigenvector fields that are of the electron and positron particles. Then they are compiled to form combinatorial eigenvector matrix bundle of the monopole particle circuit field constructs assembly. Evaluation of this monopole particle fields matrix provided eigenvector fields results like SUSY, having Hermitian quantum matrix with electron-positron annihilation alongside north and south monopoles collapsing to dipolar “stable” magnetism, representing electromagnetic gaging typical metrics fields. Applying experimental observations on magnetic poles with measuring magnetic forces John Hodge’s results were showing asymmetrical pole forces; author has mathematically constructed asymmetric\strings\gage\metrics to characterize electromagnetic gravity, putting together while integrating with stringmetrics gravity that author has been reporting in earlier published articles. Physical Analysis with generalization of mass-charge and charge-fields gage metrics to quantum relativity gage metrics fields are proposed based on author’s proof formalism paper providing derivational algorithmic steps, to determine gage parametric values within the equation of Coulomb gage. Vortex fields’ wavefunctions and the scalar potential characterized by a function and a coupling constant having quantum density matrix together define the gage metrics quantifiable observable measurement physics of electron-positron cross-diagonal fields; contrastingly, diagonal terms of PDPcag matrix characterizes electron-positron particle eigenvector fields, while Hilbert Higgs mass metrics characterizes eigen-matter. Author is already working with Christopher O’Neill about magic square symmetry configurations to quantitatively understand symmetry, structure, and the real space geometry that are expected to form out of vacuum quanta point fields’ quantitative quantum general formalism theory of Iyer Markoulakis. In addition, author is currently collaborating with Manuel Malaver’s astrophysical Einstein Minkowski modified space time metrics evaluations of the sense-time-space relativistic general metrics to have means to account for curving or shaping of spacetime topology of a five-dimensional sense-time-space. Manuel Malaver’s specialization with modified Einstein Maxwell equations for modeling galaxies and stars cosmological physics, utilizing Einstein-Maxwell-Tolman- Schwarzschild and Reissner-Nordström spacetime and black holes theoretical formalisms have author of this paper collaboratively model quantum astrophysics of dark energy Star’s theory with Einstein-Gauss-Bonnet gravity equations.


2021 ◽  
Vol 103 (9) ◽  
Author(s):  
Kazuo Fujikawa ◽  
Koichiro Umetsu

2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Anton Galajinsky

AbstractMotivated by recent studies of superconformal mechanics extended by spin degrees of freedom, we construct minimally superintegrable models of generalized spinning particles on $${\mathcal {S}}^2$$ S 2 , the internal degrees of freedom of which are represented by a 3-vector obeying the structure relations of a three-dimensional real Lie algebra. Extensions involving an external field of the Dirac monopole, or the motion on the group manifold of SU(2), or a scalar potential giving rise to two quadratic constants of the motion are discussed. A procedure how to build similar models, which rely upon real Lie algebras with dimensions $$d=4,5,6$$ d = 4 , 5 , 6 , is elucidated.


2021 ◽  
Vol 36 (03) ◽  
pp. 2150019
Author(s):  
Xiao-Yin Pan ◽  
Yin Chen ◽  
Yu-Qi Li ◽  
Aaron G. Kogan ◽  
Juhao Wu

In the Dirac theory of the quantum-mechanical interaction of a magnetic monopole and an electric charge, the vector potential is singular from the origin to infinity along a certain direction — the so-called Dirac string. Imposing the famous quantization condition, the singular string attached to the monopole can be rotated arbitrarily by a gauge transformation, and hence is not physically observable. By deriving its analytical expression and analyzing its properties, we show that the gauge function [Formula: see text] which rotates the string to another one is a smooth function everywhere in space, except their respective strings. On the strings, [Formula: see text] is a multi-valued function. Consequently, some misunderstandings in the literature are clarified.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Fabrizio Canfora ◽  
Alex Giacomini ◽  
Marcela Lagos ◽  
Seung Hun Oh ◽  
Aldo Vera

AbstractIn this paper, we construct the first analytic examples of $$(3+1)$$ ( 3 + 1 ) -dimensional self-gravitating regular cosmic tube solutions which are superconducting, free of curvature singularities and with non-trivial topological charge in the Einstein-SU(2) non-linear $$\sigma $$ σ -model. These gravitating topological solitons at a large distance from the axis look like a (boosted) cosmic string with an angular defect given by the parameters of the theory, and near the axis, the parameters of the solutions can be chosen so that the metric is singularity free and without angular defect. The curvature is concentrated on a tube around the axis. These solutions are similar to the Cohen–Kaplan global string but regular everywhere, and the non-linear $$\sigma $$ σ -model regularizes the gravitating global string in a similar way as a non-Abelian field regularizes the Dirac monopole. Also, these solutions can be promoted to those of the fully coupled Einstein–Maxwell non-linear $$\sigma $$ σ -model in which the non-linear $$\sigma $$ σ -model is minimally coupled both to the U(1) gauge field and to General Relativity. The analysis shows that these solutions behave as superconductors as they carry a persistent current even when the U(1) field vanishes. Such persistent current cannot be continuously deformed to zero as it is tied to the topological charge of the solutions themselves. The peculiar features of the gravitational lensing of these gravitating solitons are shortly discussed.


2020 ◽  
Vol 35 (39) ◽  
pp. 2050327
Author(s):  
Sergio Giardino

We develop a quaternionic electrodynamics and show that it naturally supports the existence of magnetic monopoles. We obtained the field equations, the continuity equation, the electrodynamic force law, the Poynting vector, the energy conservation, and the stress-energy tensor. The formalism also enabled us to generalize the Dirac monopole and the charge quantization rule.


2020 ◽  
Vol 35 (15) ◽  
pp. 2050118 ◽  
Author(s):  
Derar Altarawneh ◽  
Manfried Faber ◽  
Roman Höllwieser

We study topological properties of classical spherical center vortices with the low-lying eigenmodes of the Dirac operator in the fundamental and adjoint representations using both the overlap and asqtad staggered fermion formulations. We find some evidence for fractional topological charge during cooling the spherical center vortex on a [Formula: see text] lattice. We identify the object with topological charge [Formula: see text] as a Dirac monopole with a gauge field fading away at large distances. Therefore, even for periodic boundary conditions, it does not need an anti-monopole.


Sign in / Sign up

Export Citation Format

Share Document