representations of algebras
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Bojana Femić

We characterize in bicategorical terms actions of monoidal categories on the categories of representations of algebras and of relative Hopf modules. For this purpose we introduce 2-cocycles in any 2-category [Formula: see text]. We observe that under certain conditions the structures of pseudofunctors between bicategories are in one-to-one correspondence with (twisted) 2-cocycles in the image bicategory. In particular, for certain pseudofunctors to Cat, the 2-category of categories, one gets 2-cocycles in the free completion 2-category under Eilenberg–Moore objects, constructed by Lack and Street. We introduce (co)quasi-bimonads in [Formula: see text] and a suitable bicategory of Tambara (co)modules over (co)quasi-bimonads in [Formula: see text] fitting the setting of the latter pseudofuntors. We describe explicitly the involved 2-cocycles in this context and show how they are related to Sweedler’s and Hausser–Nill 2-cocycles in [Formula: see text], which we define. This allows us to recover some results of Schauenburg, Balan, Hausser and Nill for modules over commutative rings. We fit a version of the 2-category of bimonads in [Formula: see text], which we introduced in a previous paper, in a similar setting as above and recover a result of Laugwitz. We observe that pseudofunctors to Cat in general determine what we call pseudo-actions of hom-categories, which correspond to the whole range of a 2-cocycle, so that the described actions of categories appear as restrictions of these 2-cocycles to endo-hom categories.


2019 ◽  
Vol 155 (12) ◽  
pp. 2235-2262 ◽  
Author(s):  
Tomoyuki Arakawa ◽  
Edward Frenkel

We prove duality isomorphisms of certain representations of ${\mathcal{W}}$-algebras which play an essential role in the quantum geometric Langlands program and some related results.


2019 ◽  
Vol 31 (5) ◽  
pp. 1283-1304 ◽  
Author(s):  
Miodrag Cristian Iovanov ◽  
Alexander Harris Sistko

AbstractWe study maximal associative subalgebras of an arbitrary finite-dimensional associative algebra B over a field {\mathbb{K}} and obtain full classification/description results of such algebras. This is done by first obtaining a complete classification in the semisimple case and then lifting to non-semisimple algebras. The results are sharpest in the case of algebraically closed fields and take special forms for algebras presented by quivers with relations. We also relate representation theoretic properties of the algebra and its maximal and other subalgebras and provide a series of embeddings between quivers, incidence algebras and other structures which relate indecomposable representations of algebras and some subalgebras via induction/restriction functors. Some results in literature are also re-derived as a particular case, and other applications are given.


Sign in / Sign up

Export Citation Format

Share Document