black hole spin
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 36)

H-INDEX

46
(FIVE YEARS 5)

Author(s):  
David Garofalo

Giant radio galaxies are arguably the least understood of jetted active galactic nuclei (AGN). We propose that radio galaxies are the product of large mergers that do not involve radio galaxies or radio quasars, such as in merging spiral galaxies, while giant radio galaxies emerge from a merger involving a parent that in the not-too-distant past harbored a radio galaxy. Predictions following from this are an upper limit to the number fraction of giant radio galaxies to radio galaxies, lower average redshift for giant radio galaxies, a higher incidence of high excitation for giant radio galaxies compared with radio galaxies, and lower average prograde black hole spin values for giant radio galaxies compared to radio galaxies and to bright radio quiet quasars.


2021 ◽  
Vol 922 (1) ◽  
pp. L14
Author(s):  
Ilya Mandel ◽  
Rory J. E. Smith

Abstract GW200115 was the second merger of a black hole and a neutron star confidently detected through gravitational waves. Inference on the signal allows for a large black hole spin misaligned with the orbital angular momentum, but shows little support for aligned spin values. We show that this is a natural consequence of measuring the parameters of a black hole–neutron star binary with nonspinning components while assuming the priors used in the LIGO–Virgo–KAGRA analysis. We suggest that, a priori, a nonspinning binary is more consistent with current astrophysical understanding.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 364
Author(s):  
Elizabeth P. Tito ◽  
Vadim I. Pavlov

For a scenario of a close flyby of a compact star near a spinning black hole, we provide analytical and numerical estimates for the shift of trajectory periastron due to relativistic (beyond post-Newtonian) effects. More specifically, we derived a generalized expression (not limited to quasi-circular or elliptical orbits) directly linking the periastron shift and the spin of the black hole. The expression permits the estimation of black hole spin based on astronomical tracking of locations of stars traveling along highly eccentric (parabolic and hyperbolic) trajectories in close vicinity of a black hole. We also demonstrate how stars traveling on hyperbolic or parabolic trajectories may be (temporarily) captured onto quasi-circular orbits around black holes, and we quantitatively examine conditions for such scenarios.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Haopeng Yan ◽  
Minyong Guo ◽  
Bin Chen

AbstractWe revisit monochromatic and isotropic photon emissions from the zero-angular-momentum sources (ZAMSs) near a Kerr black hole. We investigate the escape probability of the photons that can reach to infinity and study the energy shifts of these escaping photons, which could be expressed as the functions of the source radius and the black hole spin. We study the cases for generic source radius and black hole spin, but we pay special attention to the near-horizon (near-)extremal Kerr ((near-)NHEK) cases. We reproduce the relevant numerical results using a more efficient method and get new analytical results for (near-)extremal cases. The main non-trivial results are: in the NHEK region of a (near-)extremal Kerr black hole, the escape probability for a ZAMS tends to $$\frac{7}{24}\approx 29.17\%$$ 7 24 ≈ 29.17 % , independent of the NHEK radius; at the innermost of the photon shell (IPS) in the near-NHEK region, the escape probability for a ZAMS tends to $$\begin{aligned} \frac{5}{12} -\frac{1}{\sqrt{7}} + \frac{2}{\sqrt{7}\pi }\arctan \frac{1}{\sqrt{7}}\approx 12.57\% . \end{aligned}$$ 5 12 - 1 7 + 2 7 π arctan 1 7 ≈ 12.57 % .


2021 ◽  
Vol 916 (2) ◽  
pp. 108
Author(s):  
Xueshan Zhao ◽  
Lijun Gou ◽  
Yanting Dong ◽  
Youli Tuo ◽  
Zhenxuan Liao ◽  
...  
Keyword(s):  
X Ray ◽  

Author(s):  
Christopher S. Reynolds

The spin of a black hole is an important quantity to study, providing a window into the processes by which a black hole was born and grew. Furthermore, spin can be a potent energy source for powering relativistic jets and energetic particle acceleration. In this review, I describe the techniques currently used to detect and measure the spins of black holes. It is shown that: ▪ Two well-understood techniques, X-ray reflection spectroscopy and thermal continuum fitting, can be used to measure the spins of black holes that are accreting at moderate rates. There is a rich set of other electromagnetic techniques allowing us to extend spin measurements to lower accretion rates. ▪ Many accreting supermassive black holes are found to be rapidly spinning, although a population of more slowly spinning black holes emerges at masses above M > 3 × 107 M⊙ expected from recent structure formation models. ▪ Many accreting stellar-mass black holes in X-ray binary systems are rapidly spinning and must have been born in this state. ▪ The advent of gravitational wave astronomy has enabled the detection of spin effects in merging binary black holes. Most of the premerger black holes are found to be slowly spinning, a notable exception being an object that may itself be a merger product. ▪ The stark difference in spins between the black hole X-ray binary and the binary black hole populations shows that there is a diversity of formation mechanisms. Given the array of new electromagnetic and gravitational wave capabilities currently being planned, the future of black hole spin studies is bright. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document