ojip transient
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 1)

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 563
Author(s):  
Hyo Gil Choi

The rainy season occurs mainly from June to July in Korea, and this season causes insufficient ambient light intensity for the growth of cherry tomato in a greenhouse. Titanium dioxide (TiO2), as a photocatalyst, is known to affect photosynthesis in plants. This study was carried out to investigate the influence of TiO2 foliar spray application on the yield and photophysiological responses of cherry tomato under low ambient light intensity during the rainy season in a greenhouse. Cherry tomato plants were treated with 100 mg·L−1 TiO2 (T1) or 200 mg·L−1 TiO2 (T2) nanoparticle suspension on 26 June. The control group was not treated with TiO2. In the O–J phase of the OJIP transient under a cloudy day (2 July), the slope in the control and T1 groups rose more sharply than that in the T2 group. Conversely, on a clear day (10 July), the J–I phase of the T2 group sharply increased compared to that of the control and T1 groups. On a cloudy day with low ambient light intensity, the rate of electron transport flux from QA to QB per photosystem II reaction center (ET0/RC) and carbon dioxide (CO2) fixation of TiO2-treated plants were increased compared to those of the control. However, on a clear day of high light intensity, the ET0/RC and CO2 fixation of the T2 group were lower than those of the control and Tl groups. The yield of fruit was increased in the T1 group over that in other treatments. TiO2 treatment reduced the size of the fruit and delayed the ripening time, but greatly increased the fruit hardness. These results suggest that setting the concentration and supply amount of TiO2 nanoparticles suitable for various environmental conditions should be prioritized in order to improve the effect of TiO2 nanoparticles in tomato cultivation.


2021 ◽  
Vol 22 (17) ◽  
pp. 9353
Author(s):  
Mohammad Sarraf ◽  
Kricelle Mosquera Deamici ◽  
Houda Taimourya ◽  
Monirul Islam ◽  
Sunita Kataria ◽  
...  

Magnetopriming has emerged as a promising seed-priming method, improving seed vigor, plant performance and productivity under both normal and stressed conditions. Various recent reports have demonstrated that improved photosynthesis can lead to higher biomass accumulation and overall crop yield. The major focus of the present review is magnetopriming-based, improved growth parameters, which ultimately favor increased photosynthetic performance. The plants originating from magnetoprimed seeds showed increased plant height, leaf area, fresh weight, thick midrib and minor veins. Similarly, chlorophyll and carotenoid contents, efficiency of PSII, quantum yield of electron transport, stomatal conductance, and activities of carbonic anhydrase (CA), Rubisco and PEP-carboxylase enzymes are enhanced with magnetopriming of the seeds. In addition, a higher fluorescence yield at the J-I-P phase in polyphasic chlorophyll a fluorescence (OJIP) transient curves was observed in plants originating from magnetoprimed seeds. Here, we have presented an overview of available studies supporting the magnetopriming-based improvement of various parameters determining the photosynthetic performance of crop plants, which consequently increases crop yield. Additionally, we suggest the need for more in-depth molecular analysis in the future to shed light upon hidden regulatory mechanisms involved in magnetopriming-based, improved photosynthetic performance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiafei Zhang ◽  
Liang Wan ◽  
C. Igathinathane ◽  
Zhao Zhang ◽  
Ya Guo ◽  
...  

Accurate acquisition of plant phenotypic information has raised long-standing concerns in support of crop breeding programs. Different methods have been developed for high throughput plant phenotyping, while they mainly focused on the canopy level without considering the spatiotemporal heterogeneity at different canopy layers and growth stages. This study aims to phenotype spatiotemporal heterogeneity of chlorophyll (Chl) content and fluorescence response within rice leaves and canopies. Multipoint Chl content and high time-resolved Chl a fluorescence (ChlF) transient (OJIP transient) of rice plants were measured at different nitrogen levels and growth stages. Results showed that the Chl content within the upper leaves exhibited an increasing trend from the basal to the top portions but a decreasing pattern within the lower leaves at the most growth stages. Leaf Chl content within the rice canopy was higher in the lower leaves in the vegetative phase, while from the initial heading stage the pattern gradually reversed with the highest Chl content appearing in the upper leaves. Nitrogen supply mainly affects the occurrence time of the reverse vertical pattern. This could be the result of different nutritional demands of leaves transforming from sinks to sources, and it was further confirmed by the fall of the JI phase of OJIP transient in the vegetative phase and the rise in the reproductive phase. We further deduced that the vertical distribution of Chl content could have a defined pattern at a specific growth stage. Furthermore, the reduction of end acceptors at photosystem I (PSI) electron acceptor side per cross section (RE0/CS) was found to be a potential sensitive predictor for identifying the vertical heterogeneity of leaf Chl content. These findings provide prior knowledge on the vertical profiles of crop physiological traits, which explore the opportunity to develop more efficient plant phenotyping tools for crop breeding.


2020 ◽  
Vol 38 (3) ◽  
pp. 450-460
Author(s):  
Soo In Sohn ◽  
Yong Ho Lee ◽  
Sun Hee Hong ◽  
Chang Seok Kim ◽  
Myung Hyun Kim ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1275
Author(s):  
Lenka Botyanszka ◽  
Marek Zivcak ◽  
Erik Chovancek ◽  
Oksana Sytar ◽  
Viliam Barek ◽  
...  

To assess the reliability and sensitivity of non-invasive optical methods to detect the early effects of water deficit in the field, we analyzed the time-series of non-invasive measurements obtained in a dry season in a representative collection of wheat genotypes grown in small-plot field trials, in non-irrigated and irrigated variants. Despite a progressive water deficit and significant yield loss, the measurements indicated very minor changes in chlorophyll content or canopy cover. This corresponded well to the insignificant differences in spectral reflectance normalized difference vegetation index (NDVI) values. On the other hand, we identified the significant and rapid response of fast fluorescence kinetics data following the onset of irrigation. Analysis of parameters showed the main effects of drought were associated with changes in the amplitude of the I–P phase of the OJIP transient, indicating changes at the level of photosystem I and beyond. Statistical analyses identified the integrative parameter performance index PItot as the most sensitive parameter, which well-reflects the differences in responses of the genotypes to water deficit. Our results suggest that focusing on photosynthetic functions detected by the rapid chlorophyll fluorescence records can provide more accurate information on the drought stress level, compared to the structural data obtained by absorbance or reflectance measurements.


2020 ◽  
Vol 71 (20) ◽  
pp. 6429-6443
Author(s):  
Dawei Sun ◽  
Haixia Xu ◽  
Haiyong Weng ◽  
Weijun Zhou ◽  
Yan Liang ◽  
...  

Abstract Nitrogen (N) fertilizer maximizes the growth of oilseed rape (Brassica napus L.) by improving photosynthetic performance. Elucidating the dynamic relationship between fluorescence and plant N status could provide a non-destructive diagnosis of N status and the breeding of N-efficient cultivars. The aim of this study was to explore the impacts of different N treatments on photosynthesis at a spatial–temporal scale and to evaluate the performance of three fluorescence techniques for the diagnosis of N status. One-way ANOVA and linear discriminant analysis were applied to analyze fluorescence data acquired by a continuous excitation chlorophyll fluorimeter (OJIP transient analysis), pulse amplitude-modulated chlorophyll fluorescence (PAM-ChlF), and multicolor fluorescence (MCF) imaging. The results showed that the maximum quantum efficiency of PSII photochemistry (Fv/Fm) and performance index for photosynthesis (PIABS) of bottom leaves were sensitive to N status at the bolting stage, whereas the red fluorescence/far-red fluorescence ratio of top leaves was sensitive at the early seedling stage. Although the classification of N treatments by the three techniques achieved comparable accuracies, MCF imaging showed the best potential for early diagnosis of N status in field phenotyping because it had the highest sensitivity in the top leaves, at the early seedling stage. The findings of this study could facilitate research on N management and the breeding of N-efficient cultivars.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 64 ◽  
Author(s):  
Luciana Cristina Vitorino ◽  
Fellipe Oliveira da Silva ◽  
Bárbara Gonçalves Cruvinel ◽  
Layara Alexandre Bessa ◽  
Márcio Rosa ◽  
...  

Sclerotinia sclerotiorum is a necrotrophic parasitic fungus that causes Sclerotinia stem rot (SSR), which is currently one of the most difficult agronomic crop diseases to control. A number of plants of the Brazilian Cerrado biome have been shown to be important sources of symbiotic microorganisms with biotechnological potential, so we decided to test the potential of bacteria isolated from the dwarf jelly palm, Butia archeri (Arecaceae) for the control of the pathogenic effects provoked by S. sclerotiorum. For this, we bioprimed seeds and evaluated the effects of this biopriming on the OJIP transient patterns prior to and following infection by the phytopathogen. Plants treated with the BA48R strain of Enterobacter sp., and in particular, those treated with the BA88R strain of Bacillus cereus presented the best results in terms of the loss/gain of the physiological and symptomatological variables evaluated. The plants bioprimed with BA88R presented high post-infection levels of total chlorophyll (33.35 FCIs) and chlorophyll a (26.39 FCIs), maintained a high Nitrogen Balance Index (NBI = 18.87), and synthesized low concentrations of flavonoids (1.39). These plants also maintained high levels of PIABS (1.111) and PITOTAL (1.300) following infection, and low levels of Di0/RC (0.602), which indicates that, in the presence S. sclerotiorum, the efficiency of the photosynthesis in the plants treated with these bacteria was less affected in the reaction centers, as confirmed by the negative amplitude recorded in the L band. The present study reconfirms the importance of the use of chlorophyll fluorescence for the diagnosis of disease and conditions of stress in crop plants, in addition to demonstrating the effectivenesss of the BA48R bacterial strain and, in particular, the BA88R strain on systemic resistance induction and suppression of S. sclerotiorum in Glycine max plants, with enormous potential for the development of more sustainable agricultural processes.


2019 ◽  
Author(s):  
Xuena Liu ◽  
Song Gao ◽  
Ying Liu ◽  
Kun Xu

Abstract Background: Welsh onions are often affected by stressful environments, such as high light and drought, during summer cultivation, which hinders their growth. To date, few studies have focused on leaf photosynthesis of Welsh onions during summer. We used carbon dioxide assimilation and OJIP transient and MR curves to analyze the photosynthetic characteristics of Welsh onions. Results: The results showed that strong light and drought could lead to a decrease in leaf pigment content. Simple high light stress caused a decrease in the net photosynthetic rate through stomatal limitation, while the simple drought treatment and the two stress factors combined caused a nonstomatal limitation. PSII energy distribution indicated that strong light and drought stress reduced the photochemical quantum efficiency of PSII. OJIP curve analysis showed that FO and FJ were increased, Fm was decreased, and a distinct K-phase was induced. In addition, OJIP parameters, including RC/CSO, TRO/ABS, ETO/TRO, and PIABS, were significantly reduced. MR analysis showed that strong light and drought stress blocked MR transients, leading to a gradual decrease in VPSI and VPSII-PSI. Conclusions: In general, the photosynthesis of Welsh onion was inhibited by high light and drought, which destroyed the receptor and donor side of PSII and reduced the electron transport capacity of PSII and PSI.


2019 ◽  
Vol 10 ◽  
Author(s):  
Marcin Rapacz ◽  
Magdalena Wójcik-Jagła ◽  
Anna Fiust ◽  
Hazem M. Kalaji ◽  
Janusz Kościelniak

Sign in / Sign up

Export Citation Format

Share Document