electrostatic stress
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1178
Author(s):  
Kristian Kuppart ◽  
Simon Vigonski ◽  
Alvo Aabloo ◽  
Ye Wang ◽  
Flyura Djurabekova ◽  
...  

We present a credible mechanism of spontaneous field emitter formation in high electric field applications, such as Compact Linear Collider in CERN (The European Organization for Nuclear Research). Discovery of such phenomena opens new pathway to tame the highly destructive and performance limiting vacuum breakdown phenomena. Vacuum breakdowns in particle accelerators and other devices operating at high electric fields is a common problem in the operation of these devices. It has been proposed that the onset of vacuum breakdowns is associated with appearance of surface protrusions while the device is in operation under high electric field. Moreover, the breakdown tolerance of an electrode material was correlated with the type of lattice structure of the material. Although biased diffusion under field has been shown to cause growth of significantly field-enhancing tips starting from initial nm-size protrusions, the mechanisms and the dynamics of the growth of the latter have not been studied yet. In the current paper we conduct molecular dynamics simulations of nanocrystalline copper surfaces and show the possibility of protrusion growth under the stress exerted on the surface by an applied electrostatic field. We show the importance of grain boundaries on the protrusion formation and establish a linear relationship between the necessary electrostatic stress for protrusion formation and the temperature of the system. Finally, we show that the time for protrusion formation decreases with the applied electrostatic stress, we give the Arrhenius extrapolation to the case of lower fields, and we present a general discussion of the protrusion formation mechanisms in the case of polycrystalline copper surfaces.


MRS Advances ◽  
2019 ◽  
Vol 4 (27) ◽  
pp. 1543-1550 ◽  
Author(s):  
Katie Copenhaver ◽  
Marianna Luna ◽  
Jason Nadler

ABSTRACTElectrohydrodynamic (EHD) instabilities can be induced in polymers by placing a polymer film above its Tg in a strong electric field between two capacitor plates or electrodes. The polymer experiences an electrostatic stress at the interface between the polymer and air due to a mismatch in their dielectric constants. This stress, along with thermal fluctuations, induces small magnitude capillary waves in the polymer film, and the minima and maxima of those waves experience slightly different electric field strengths. In a sufficiently strong electric field, the capillary wave maxima, where the distances between the polymer film and the top electrode(s) are the smallest, are eventually drawn up to the top electrode. The wavelength of the instabilities in the film and the ability of the polymer to be drawn upward is a dependent on the competition between surface tension forces and the electrostatic stress imparted on the polymer. While EHD instabilities are typically used to pattern polymer surfaces on a nanometer-scale, instabilities have been induced in polymer films with air gaps up to 500 μm. Upper electrodes with non-planar structures have also been used to induce instabilities in polymer films, resulting in patterned polymer surfaces without contact. Size, shape, arrangement, and placement of the upper electrode relative to the polymer film and lower electrode, as well as the processing conditions such as temperature and applied voltage, can all be modified to produce a desired array of structures with tailored performance characteristics. Patterned polymer surfaces can provide high-index contrast over a periodic matrix with 3-dimensional element shapes. The dielectric contrast and array pitch and height can be tuned to control specular reflection and achieve specific scattering characteristics. Surfaces with tailored scattering characteristics in the aforementioned ranges could be useful in producing frequency-selective windows for glare reduction, anti-reflective solar cells with enhanced efficiency, surface waveguides and whispering gallery-mode resonator arrays for integrated photonics and sensors, and surfaces with controlled emissivity for directed heat dissipation.


2007 ◽  
Vol 65 (7) ◽  
pp. 408-413 ◽  
Author(s):  
Daniela Ichim ◽  
Dorina Creanga ◽  
Alina Rapa

2004 ◽  
Vol 72 (4) ◽  
pp. 581-590 ◽  
Author(s):  
Robert M. McMeeking ◽  
Chad M. Landis

An isothermal energy balance is formulated for a system consisting of deformable dielectric bodies, electrodes, and the surrounding space. The formulation in this paper is obtained in the electrostatic limit but with the possibility of arbitrarily large deformations of polarizable material. The energy balance recognizes that charges may be driven onto or off of the electrodes, a process accompanied by external electrical work; mechanical loads may be applied to the bodies, thereby doing work through displacements; energy is stored in the material by such features as elasticity of the lattice, piezoelectricity, and dielectric and electrostatic interactions; and nonlinear reversible material behavior such as electrostriction may occur. Thus the external work is balanced by (1) internal energy consisting of stress doing work on strain increments, (2) the energy associated with permeating free space with an electric field, and (3) by the electric field doing work on increments of electric displacement or, equivalently, polarization. For a conservative system, the internal work is stored reversibly in the body and in the underlying and surrounding space. The resulting work statement for a conservative system is considered in the special cases of isotropic deformable dielectrics and piezoelectric materials. We identify the electrostatic stress, which provides measurable information quantifying the electrostatic effects within the system, and find that it is intimately tied to the constitutive formulation for the material and the associated stored energy and cannot be independent of them. The Maxwell stress, which is related to the force exerted by the electric field on charges in the system, cannot be automatically identified with the electrostatic stress and is difficult to measure. Two well-known and one novel formula for the electrostatic stress are identified and related to specific but differing constitutive assumptions for isotropic materials. The electrostatic stress is then obtained for a specific set of assumptions in regard to a piezoelectric material. An exploration of the behavior of an actuator composed of a deformable, electroactive polymer is presented based on the formulation of the paper.


1991 ◽  
Vol 126 ◽  
pp. 371-374
Author(s):  
Tadashi Mukai

AbstractAn enhancement of the electrostatic stress forces due to the charge concentration on a position with small radius of curvature on the surface of irregularly shaped particle causes the fragmentation of fluffy particle more than expected for a spherical particle. This mechanism may act to produce “dust clusters” as detected in comet P/Halley by Simpsonet al.(1987) and also “dust swarms” near the Earth as reported in Fechtig(1982).


Sign in / Sign up

Export Citation Format

Share Document