space physics
Recently Published Documents


TOTAL DOCUMENTS

486
(FIVE YEARS 96)

H-INDEX

23
(FIVE YEARS 5)

2021 ◽  
Vol 923 (2) ◽  
pp. 216
Author(s):  
S. T. Yao ◽  
Q. Q. Shi ◽  
Q. G. Zong ◽  
A. W. Degeling ◽  
R. L. Guo ◽  
...  

Abstract The role of whistler-mode waves in the solar wind and the relationship between their electromagnetic fields and charged particles is a fundamental question in space physics. Using high-temporal-resolution electromagnetic field and plasma data from the Magnetospheric MultiScale spacecraft, we report observations of low-frequency whistler waves and associated electromagnetic fields and particle behavior in the Earth’s foreshock. The frequency of these whistler waves is close to half the lower-hybrid frequency (∼2 Hz), with their wavelength close to the ion gyroradius. The electron bulk flows are strongly modulated by these waves, with a modulation amplitude comparable to the solar wind velocity. At such a spatial scale, the electron flows are forcibly separated from the ion flows by the waves, resulting in strong electric currents and anisotropic ion distributions. Furthermore, we find that the low-frequency whistler wave propagates obliquely to the background magnetic field ( B 0), and results in spatially periodic magnetic gradients in the direction parallel to B 0. Under such conditions, large pitch-angle electrons are trapped in wave magnetic valleys by the magnetic mirror force, and may provide free perpendicular electron energy to excite higher-frequency whistler waves. This study offers important clues and new insights into wave–particle interactions, wave generation, and microscale energy conversion processes in the solar wind.


2021 ◽  
Vol 62 (5) ◽  
pp. 5.28-5.29
Author(s):  
Angeline G Burrell ◽  
McArthur Jones ◽  
Alexa Halford ◽  
Kate Zawdie ◽  
John Coxon

Abstract Angeline G Burrell, McArthur Jones Jr, Alexa Halford, Kate Zawdie and John Coxon have collaborated to create a set of tools to tackle conscious and unconscious bias in space physics research


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 361
Author(s):  
Zhihui Zhong ◽  
Chenglong Shen ◽  
Dongwei Mao ◽  
Yutian Chi ◽  
Mengjiao Xu ◽  
...  

When a CME arrives at the Earth, it will interact with the magnetosphere, sometimes causing hazardous space weather events. Thus, the study of CMEs which arrived at Earth (hereinafter, Earth-impacting CMEs) has attracted much attention in the space weather and space physics communities. Previous results have suggested that the three-dimensional parameters of CMEs play a crucial role in deciding whether and when they reach Earth. In this work, we use observations from the Solar TErrestrial RElations Observatory (STEREO) to study the three-dimensional parameters of 71 Earth-impacting CMEs from the middle of 2008 to the end of 2012. We find that the majority Earth-impacting CMEs originate from the region of [30S,30N] × [40E,40W] on the solar disk; Earth-impacting CMEs are more likely to have a central propagation angle (CPA) no larger than half-angular width, a negative correlation between velocity and acceleration, and propagation time is inversely related to velocity. Based on our findings, we develop an empirical statistical model to forecast the arrival time of the Earth-impacting CME. Also included is a comparison between our model and the aerodynamic drag model.


2021 ◽  
Vol 13 (17) ◽  
pp. 3432
Author(s):  
Weijun Lu ◽  
Guanyi Ma ◽  
Qingtao Wan

Ionized by solar radiation, the ionosphere causes a phase rotation or time delay to trans-ionospheric radio waves. Reconstruction of ionospheric electron density profiles with global navigation satellite system (GNSS) observations has become an indispensable technique for various purposes ranging from space physics studies to radio applications. This paper conducts a comprehensive review on the development of voxel-based computerized ionospheric tomography (CIT) in the last 30 years. A brief introduction is given in chronological order starting from the first report of CIT with simulation to the newly proposed voxel-based algorithms for ionospheric event analysis. The statement of the tomographic geometry and voxel models are outlined with the ill-posed and ill-conditioned nature of CIT addressed. With the additional information from other instrumental observations or initial models supplemented to make the coefficient matrix less ill-conditioned, equation constructions are categorized into constraints, virtual data assimilation and multi-source observation fusion. Then, the paper classifies and assesses the voxel-based CIT algorithms of the algebraic method, statistical approach and artificial neural networks for equation solving or electron density estimation. The advantages and limitations of the algorithms are also pointed out. Moreover, the paper illustrates the representative height profiles and two-dimensional images of ionospheric electron densities from CIT. Ionospheric disturbances studied with CIT are presented. It also demonstrates how the CIT benefits ionospheric correction and ionospheric monitoring. Finally, some suggestions are provided for further research about voxel-based CIT.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1081
Author(s):  
Vladimír Truhlík ◽  
Dieter Bilitza ◽  
Dmytro Kotov ◽  
Maryna Shulha ◽  
Ludmila Třísková

This study presents a suggestion for improvement of the ion temperature (Ti) model in the International Reference Ionosphere (IRI). We have re-examined ion temperature data (primarily available from NASA’s Space Physics Data Facility (SPDF)from older satellites and combined them with newly available data from the Defense Meteorological Satellite Program (DMSP), the Communication Navigation Outage Forecasting System (C/NOFS), and from the recently launched Ionospheric Connection Explorer (ICON). We have compiled these data into a unified database comprising in total Ti data from 18 satellites. By comparisons with long term records of ion temperature from the three incoherent scatter radars (ISRs) (Jicamarca, Arecibo, and Millstone Hill), it was found that an intercalibration is needed to achieve consistency with the ISR data and among individual satellite data sets. This database with thus corrected data has been used for the development of a new global empirical model of Ti with inclusion of solar activity variation. This solar activity dependence is represented by an additive correction term to the Ti global pattern. Due to the limited data coverage at altitudes above 1000 km, the altitude range described by the model ranges from 350 km to 850 km covering only the region where generally Ti is higher than the neutral temperature (Tn) and lower than the electron temperature (Te). This approach is consistent with the current description of Ti in the IRI model. However, instead of one anchor point at 430 km altitude as in the current IRI, our approach includes anchor points at 350, 430, 600, and 850 km. At altitudes above 850 km Ti is merged using a gradient derived from the model at 600 and 850 km, with the electron temperature described by the IRI-2016/TBT-2012 option. Comparisons with the ISR data (Jicamarca, Arecibo, Millstone Hill, and Kharkiv) for high and low solar activity and equinox show that the proposed Ti model captures local time variation of Ti at different altitudes and latitudes better than the current IRI-2016 Ti model.


Sign in / Sign up

Export Citation Format

Share Document