A series of novel menthol derivatives containing 1,2,4-triazole-thioether moiety were designed, synthesized, characterized structurally, and evaluated biologically to explore more potent natural product-based antifungal agents. The bioassay results revealed that at 50 μg/mL, some of the target compounds exhibited good inhibitory activity against the tested fungi, especially against Physalospora piricola. Compounds 5b (R = o-CH3 Ph), 5i (R = o-Cl Ph), 5v (R = m, p-OCH3 Ph) and 5x (R = α-furyl) had inhibition rates of 93.3%, 79.4%, and 79.4%, respectively, against P. piricola, much better than that of the positive control chlorothalonil. Compounds 5v (R = m, p-OCH3 Ph) and 5g (R = o-Cl Ph) held inhibition rates of 82.4% and 86.5% against Cercospora arachidicola and Gibberella zeae, respectively, much better than that of the commercial fungicide chlorothalonil. Compound 5b (R = o-CH3 Ph) displayed antifungal activity of 90.5% and 83.8%, respectively, against Colleterichum orbicalare and Fusarium oxysporum f. sp. cucumerinum. Compounds 5m (R = o-I Ph) had inhibition rates of 88.6%, 80.0%, and 88.0%, respectively, against F.oxysporum f. sp. cucumerinu, Bipolaris maydis and C. orbiculare. Furthermore, compound 5b (R = o-CH3 Ph) showed the best and broad-spectrum antifungal activity against all the tested fungi. To design more effective antifungal compounds against P. piricola, 3D-QSAR analysis was performed using the CoMFA method, and a reasonable 3D-QSAR model (r2 = 0.991, q2= 0.514) was established. The simulative binding pattern of the target compounds with cytochrome P450 14α-sterol demethylase (CYP51) was investigated by molecular docking.