velocity matching
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
Vol 123 ◽  
pp. 107611
Author(s):  
Jianfei Cheng ◽  
Lining Ru ◽  
Xiao Wang ◽  
Yicheng Liu

2021 ◽  
Vol 8 (6) ◽  
pp. 1089
Author(s):  
Endra Joelianto ◽  
Winarendra Satya Rajasa ◽  
Agus Samsi

<p class="Abstrak">Quadrotor merupakan wahana udara nir-awak jenis lepas landas atau pendaratan vertikal berbentuk silang dan memiliki sebuah rotor pada setiap ujung lengannya dengan kemampuan manuver yang tinggi. <em>Swarm</em> quadrotor yang terdiri dari sekumpulan quadrotor akan menjadi suatu <em>swarm</em> yang baik, sesuai dengan kriteria <em>swarm</em> oleh Reynold yaitu dapat menghindari tumbukan, menyamakan kecepatan, dan pemusatan <em>swarm</em>. Pengontrolan <em>s</em><em>warm</em> quadrotor memiliki tingkat kerumitan yang tinggi karena melibatkan banyak agen. Riset pengembangan <em>swarm </em>quadrotor masih belum banyak dilakukan dan masih membuka peluang untuk meneliti dengan metoda lain yang lebih baik dalam menghasilkan <em>swarm</em>. Makalah ini mengusulkan pengontrolan <em>swarm</em> quadrotor yang terdiri dari dua tingkat lup kontrol. Lup pertama adalah pengontrol sistem model <em>swarm</em> untuk membangkitkan lintasan <em>swarm</em> dan lup kedua merupakan pengontrol pada quadrotor untuk melakukan penjejakan lintasan <em>swarm</em>. Pengontrol pertama menggunakan pengontrol proporsional derivatif (PD), sedangkan pengontrol kedua menggunakan regulator linier kuadratik (RLK). Pengontrol yang dirancang memiliki parameter yang banyak, sehingga pemilihan parameter yang optimal sangat sulit. Pencarian parameter optimal pada pengontrol model <em>swarm</em> quadrotor membutuhkan teknik optimasi seperti algoritma genetik (AG) untuk mengarahkan pencarian menuju solusi yang menghasilkan kinerja terbaik. Pada makalah ini, penalaan dengan optimasi AG hanya dilakukan pada pengontrol PD untuk menghasilkan lintasan <em>swarm</em> terbaik, sedangkan matrik bobot RLK dilakukan secara uji coba. Hasil simulasi <em>swarm</em> pada model quadrotor menunjukkan parameter , . , dan  yang diperoleh menggunakan AG menghasilkan pergerakan <em>swarm</em> yang baik dengan kesalahan RMS pelacakan 0,0094 m terhadap fungsi obyektif. Sedangkan ketika parameter ,  dan  dicari menggunakan AG, tidak berpengaruh banyak dalam memperbaiki hasil simulasi swarm quadrotor.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>The quadrotor is a type of take-off or vertical landing unmanned aerial vehicles with a cross shape and has one rotor at each end of its arm with high maneuverability. A quadrotor swarm consisting of a group of quadrotors leads to a good swarm, according to Reynold's swarm criteria, which accomplishes collision avoidance, velocity matching, and flock centering. Quadrotor swarm control has a high level of complexity because it involves many agents. Research on the development of quadrotor swarm has received insignificant attention and it still opens opportunities to research other methods that are better at producing swarm. The paper proposes the control of a quadrotor swarm consisted of two levels of control loops. The first loop controls the swarm model system to generate the swarm trajectory and the second loop is the controller on the quadrotor to track the swarm path. The first controller uses a proportional derivative controller (PD), while the second controller uses the linear quadratic regulator (LQR). The controller that is designed has many parameters, so the optimal parameter selection is very difficult. The search for optimal parameters in the swarm model controller requires optimization techniques such as the genetic algorithm (GA) to direct the search for solutions that produce the best performance. In this paper, tuning with the optimization of GA is only done for the PD controller in order to produce the best swarm trajectory, while the weight matrices of the LQR are done on a trial error basis. Swarm simulation results of a quadrotor model system show the parameters , . , and  obtained using GA produce a good swarm movement with RMS error 0.0094 m of the objective function. Whereas when parameters ,  and  are searched using GA, it does not have much effect in improving the quadrotor swarm simulation results.</em></p><p class="Abstrak"><em><strong><br /></strong></em></p>


Measurement ◽  
2021 ◽  
pp. 110518
Author(s):  
Gaozheng Zhao ◽  
Mingshun Jiang ◽  
Yuxiang Luo ◽  
Qingmei Sui

2021 ◽  
Vol 11 (17) ◽  
pp. 8069
Author(s):  
Jichao Xu ◽  
Wujun Zhu ◽  
Yanxun Xiang ◽  
Yang Gao ◽  
Xunlin Qiu

Nonlinear Lamb waves have attracted increasing attention for detecting and identifying microstructural changes in structural health monitoring. However, most identification methods that determine the damage locations based on the intersections of the elliptical loci will inevitably cause positioning errors due to the change of the group velocity before and after interaction with the damage. In this work, a method focusing on elliptical rings was proposed for localization and imaging of micro-cracks in a three-dimensional structure using nonlinear Lamb waves with imperfect group-velocity matching. The width of the elliptical rings can be determined by the degree of the group-velocity mismatching of nonlinear S0 modes. The mode pair S0-s0, satisfying approximate group-velocity matching, is mainly introduced by interacting with the micro-crack. The effectiveness of the proposed methodology for damage localization is verified by the experimental testing and numerical simulation. Although the length of the being-tested small crack (about 1 mm) is smaller than the wavelength of the incident fundamental Lamb wave (around 20 mm), it can be well identified and localized using nonlinear Lamb waves. The experimental results show that the proposed method enables more reliable localization of the small crack with the crossover areas, as compared with the intersections based on the ellipse method. Furthermore, a breathing crack not situated in the propagation path can also be well localized by the proposed method in comparison with those by the probability-based diagnostic imaging in the simulation cases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
O. Melchert ◽  
S. Willms ◽  
U. Morgner ◽  
I. Babushkin ◽  
A. Demircan

AbstractThe nonlinear interaction of copropagating optical solitons enables a large variety of intriguing bound-states of light. We here investigate the interaction dynamics of two initially superimposed fundamental solitons at distinctly different frequencies. Both pulses are located in distinct domains of anomalous dispersion, separated by an interjacent domain of normal dispersion, so that group velocity matching can be achieved despite a vast frequency gap. We demonstrate the existence of two regions with different dynamical behavior. For small velocity mismatch we observe a domain in which a single heteronuclear pulse compound is formed, which is distinct from the usual concept of soliton molecules. The binding mechanism is realized by the mutual cross phase modulation of the interacting pulses. For large velocity mismatch both pulses escape their mutual binding and move away from each other. The crossover phase between these two cases exhibits two localized states with different velocity, consisting of a strong trapping pulse and weak trapped pulse. We detail a simplified theoretical approach which accurately estimates the parameter range in which compound states are formed. This trapping-to-escape transition allows to study the limits of pulse-bonding as a fundamental phenomenon in nonlinear optics, opening up new perspectives for the all-optical manipulation of light by light.


Author(s):  
Victor Roman-Rodriguez ◽  
Benjamin Brecht ◽  
Srinivasan Kaali ◽  
Christine Silberhorn ◽  
Nicolas Treps ◽  
...  

Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Jinwei Yu ◽  
Jinchen Ji ◽  
Zhonghua Miao ◽  
Jin Zhou

SUMMARY This paper proposes a fully distributed continuous region-reaching controller for multi-robot systems which can effectively eliminate the chattering issues and the negative effects caused by discontinuities. The adaptive control gain technique is employed to solve the distributed region-reaching control problem. By performing Lyapunov function-based stability analysis, it is shown that all the robots can move cohesively within the desired region under the proposed distributed control algorithm. In addition, collision avoidance and velocity matching within the moving region can be guaranteed under properly designed control gains. Simulation examples are given to verify the capabilities of the proposed control method.


2021 ◽  
Vol 11 (2) ◽  
pp. 565
Author(s):  
Ilhwan Kim ◽  
Donghwa Lee ◽  
Kwang Jo Lee

We investigated the high-purity entangled photon-pair generation in five kinds of “non-poled” potassium titanyl phosphate (KTP) isomorphs (i.e., KTiOPO4, RbTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4). The technique is based on the spontaneous parametric down-conversion (SPDC) under Type II extended phase matching (EPM), where the phase matching and the group velocity matching are simultaneously achieved between the interacting photons in non-poled crystals rather than periodically poled (PP) KTPs that are widely used for quantum experiments. We discussed both theoretically and numerically all aspects required to generate photon pairs in non-poled KTP isomorphs, in terms of the range of the beam propagation direction (or the spectral range of photons) and the corresponding effective nonlinearities and beam walk-offs. We showed that the SPDC efficiency can be increased in non-poled KTP isomorphs by 29% to 77% compared to PPKTP cases. The joint spectral analyses showed that photon pairs can be generated with high purities of 0.995–0.997 with proper pump filtering. In contrast to the PPKTP case, where the EPM is achieved only at one specific wavelength, the spectral position of photon pairs in the non-poled KTP isomorphs can be chosen over the wide range of 1883.8–2068.1 nm.


2020 ◽  
Vol 313 ◽  
pp. 112195 ◽  
Author(s):  
Zhang Zhang ◽  
Jialin Xu ◽  
Junjie Xiao ◽  
Sixing Liu ◽  
Xi’an Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document