melt crystallisation
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Georgy S. Bordonskiy

The article discusses a hypothesis put forward by V. A. Tatarchenko and M. E. Perelman. According to it, the first order phase transition during vapour condensation or melt crystallisation (PeTa effect) is accompanied by the appearance of nonthermal radiation of the media. The generally accepted point of view is that the latent heat of phase transformation can only be released in the form of heat. When the authors of the hypothesis tried to prove the existence of the effect of nonthermal radiation and considered the facts confirming it, they did not take into account the peculiarities of the initial and final states of the medium (i.e. their entropy). To clarify the physics of the process of liquid crystallisation and to consider the possibility of nonthermal radiation, we studied the peculiarities of water crystallisation and the formation of ice. This isthe process the authors referred to in order to prove their hypothesis. It was shown that in various experiments, it is necessary to consider both the state (structure) of the initial water samples and the formed ice, which can consist of various crystalline modifications with chaotic packing. These features of initial and final states, i.e. the entropy of water and ice samples in real experiments and under observed natural phenomena, make it more difficult to assess the characteristics of a possible radiation. The entropy of the initial and final states was determined by the procedure of the system preparation and the peculiarities of the phase transition dynamics. Its values depend on macroscopic parameters, as well a s on themicrostructure of the media, the determination of which is a very challenging task in each specific case. In addition, in many cases, we have to deal with metastable media, for which it is necessary to take into account the influence of fluctuations on the process of the phase transition. Therefore, the concepts of equilibrium thermodynamics are not applicable to them. However, these are the media where non-heat radiations may occur in accordance with the laws of self-organisation in nonlinear weakly nonequilibrium objects. This work shows a method for preparing low-entropy medium with its subsequent phase transformation into ice. To do so we conducted an experiment which involved freezing concentrated alcohol in order to obtain deeply supercooled water. It appears that to find the characteristics of the PeTa radiation it is necessary to takeinto account the entropy constraints for each specific case, which will allow assessing the spectrum of possible non-heated radiations and their characteristics.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3396
Author(s):  
Luboš Běhálek ◽  
Jan Novák ◽  
Pavel Brdlík ◽  
Martin Borůvka ◽  
Jiří Habr ◽  
...  

The physical properties and non-isothermal melt- and cold-crystallisation kinetics of poly (l-lactic acid) (PLLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biobased polymers reprocessed by mechanical milling of moulded specimens and followed injection moulding with up to seven recycling cycles are investigated. Non-isothermal crystallisation kinetics are evaluated by the half-time of crystallisation and a procedure based on the mathematical treatment of DSC cumulative crystallisation curves at their inflection point (Kratochvil-Kelnar method). Thermomechanical recycling of PLLA raised structural changes that resulted in an increase in melt flow properties by up to six times, a decrease in the thermal stability by up to 80 °C, a reduction in the melt half-time crystallisation by up to about 40%, an increase in the melt crystallisation start temperature, and an increase in the maximum melt crystallisation rate (up to 2.7 times). Furthermore, reprocessing after the first recycling cycle caused the elimination of cold crystallisation when cooling at a slow rate. These structural changes also lowered the cold crystallisation temperature without impacting the maximum cold crystallisation rate. The structural changes of reprocessed PHBV had no significant effect on the non-isothermal crystallisation kinetics of this material. Additionally, the thermomechanical behaviour of reprocessed PHBV indicates that the technological waste of this biopolymer is suitable for recycling as a reusable additive to the virgin polymer matrix. In the case of reprocessed PLLA, on the other hand, a significant decrease in tensile and flexural strength (by 22% and 46%, respectively) was detected, which reflected changes within the biobased polymer structure. Apart from the elastic modulus, all the other thermomechanical properties of PLLA dropped down with an increasing level of recycling.


2020 ◽  
Author(s):  
Owen Weller ◽  
Simon Jackson ◽  
William Miller ◽  
Marc St-Onge ◽  
Nicole Rayner

<p>Texturally complex monazite grains within two granulite-facies pelitic migmatites from southern Baffin Island, Arctic Canada, were mapped by laser ablation-inductively coupled plasma-mass spectrometry to quantitatively determine the spatial variation in trace element chemistry with a 4-5 μm resolution (with up to 1883 analyses per grain). The maps demarcate growth zones, some of which were cryptic with conventional imaging, highlighting the 3-D complexity of monazite grains that have experienced multiple episodes of growth and resorption during high-grade metamorphism. Associated monazite trace element systematics are highly variable, both within domains interpreted to have grown in a single event, and between samples that experienced similar metamorphic conditions and mineral assemblages. This result cautions against generalised petrological interpretations being made about monazite trace element signatures as it suggests sample-specific controls. Nevertheless, by quantifying monazite textures, a related U-Pb dataset is re-interpreted, allowing ages to be extracted from a continuum of concordant data. The results reveal a ~45 Myr interval between prograde metamorphism and retrograde melt crystallisation in the study region, emphasising the long-lived nature of heat flow in high-grade metamorphic terranes. Careful characterisation of monazite grains suggests that continuum-style U-Pb datasets can be decoded to provide insights into the rates of metamorphic processes.</p>


Author(s):  
Jovana Micovic ◽  
Thorsten Beierling ◽  
Philip Lutze ◽  
Gabriele Sadowski ◽  
Andrzej Górak
Keyword(s):  

2012 ◽  
Vol 111 (3) ◽  
pp. 2171-2178 ◽  
Author(s):  
Teresa M. R. Maria ◽  
Ricardo A. E. Castro ◽  
M. Ramos Silva ◽  
M. Luísa Ramos ◽  
Licínia L. G. Justino ◽  
...  

2001 ◽  
Vol 121 (1) ◽  
pp. 88-92 ◽  
Author(s):  
A König ◽  
A Schreiner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document