boundary area
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 76)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 209 ◽  
pp. 114384
Author(s):  
Ooraphan Chirayutthanasak ◽  
Rajchawit Sarochawikasit ◽  
Apiwat Wisitsorasak ◽  
Nopporn Rujisamphan ◽  
Timofey Frolov ◽  
...  

Journalism ◽  
2022 ◽  
pp. 146488492110675
Author(s):  
Benno Viererbl

Lifestyle journalists work in a boundary area between journalistic and commercial interests. They report journalistically on lifestyle topics such as travel, food, or fashion, while also incorporating promotional content and public relations concerns, either because reporting on lifestyle topics would otherwise not be possible or because their publications depend economically on commercial partners. These differing demands could lead to role conflicts for the editors of lifestyle magazines. This study investigates how lifestyle editors perceive expectations regarding their professional role and whether diverging expectations lead to role conflicts. To answer these questions, qualitative semi-structured interviews were conducted with lifestyle editors from Germany. The results show that lifestyle editors aim primarily to entertain, spread positivity, and inspire their readers, while attempting to report independently and objectively. However, commercial expectations compromise these norms, leading to perceptions of role conflict.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2451
Author(s):  
Zengliang Hao ◽  
Biao Yao ◽  
Yuhang Chen ◽  
Junting Luo

The U-shaped metal bellows expansion joint compensates for the pipeline displacement by its own deformation. The compensation performance of the metal bellows in the initial stage of tension and compression deformation is unstable. In this paper, the symmetrical cyclic tension and compression (SCTC) process of metal bellows was simulated by ABAQUS software. Then, the SCTC process experiment of metal bellows was completed on the universal material testing machine. The distribution law of axial load with displacement and that of axial stiffness and yield load with cycles of metal bellows were obtained. Finally, the X-ray diffraction peak confirmed the deformation-induced martensite in the wave trough and proved that the plastic strain and hardness values of metal bellows increased with the displacement amplitude. The microstructure in the wave trough area was observed by a Zeiss microscope, and the stability characteristics mechanism of the metal bellows was revealed. The martensite in the wave trough increases the grain boundary area under SCTC loading. The forward movement of the slip band in the grain caused by large deformation reached an equilibrium state with the resistance at the grain boundary, which promotes the macroscopic mechanical properties of the metal bellows to be stable characteristics under SCTC loading.


2021 ◽  
Author(s):  
Qichen Li ◽  
Toshiaki Sugihara ◽  
Sakae Shibusawa ◽  
Minzan Li

Abstract PurposeSubsurface irrigation has been confirmed to have high water use efficiency (WUE) due to it irrigating only the crop root zone. This study investigated hydrotropic root behavior when a wet zone was produced around the roots by subsurface irrigation to clarify the dynamics of soil water content in the wet zone caused by water absorption of the growing plant. ResultsWe conducted a feasibility study of a high-resolution soil moisture sensing prototype and gathered data to analyze hydrotropism and plant water absorption activity. We applied signal processing, high pass filtering, and Fast Fourier Transform (FFT) to the acquired high-resolution soil moisture data. The results showed distinct fluctuation of moisture at the boundary area, which indicated plant’s biological rhythm of photosynthetic activities. We also quantified root distribution inside and outside the wet zone and observed the shape of the root system from the cross-section of the wet zone. The results show that hydrotropism restricted most of the roots to the inside of the wet zone. Furthermore, root hydrotropic response is nonuniform for all roots of an individual plant. ConclusionsThe results suggest a new method to study hydrotropic root behavior and plant photosynthetic activities. We assumed a mechanical, push-and-pull model of water dynamics at the wetting front and the root mass accumulated by hydrotropism is an important system parameter. To further evaluate a plant’s hydrotropic performance, it is necessary to use stochastic analysis and/or a non-deterministic approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xuehu Wang ◽  
Zhiling Zhang ◽  
Kunlun Wu ◽  
Xiaoping Yin ◽  
Haifeng Guo

The gray contrast between the liver and other soft tissues is low, and the boundary is not obvious. As a result, it is still a challenging task to accurately segment the liver from CT images. In recent years, methods of machine learning have become a research hotspot in the field of medical image segmentation because they can effectively use the “gold standard” personalized features of the liver from different data. However, machine learning usually requires a large number of data samples to train the model and improve the accuracy of medical image segmentation. This paper proposed a method for liver segmentation based on the Gabor dictionary of sparse image blocks with prior boundaries. This method reduced the number of samples by selecting the test sample set within the initial boundary area of the liver. The Gabor feature was extracted and the query dictionary was created, and the sparse coefficient was calculated to obtain the boundary information of the liver. By optimizing the reconstruction error and filling holes, a smooth liver boundary was obtained. The proposed method was tested on the MICCAI 2007 dataset and ISBI2017 dataset, and five measures were used to evaluate the results. The proposed method was compared with methods for liver segmentation proposed in recent years. The experimental results show that this method can improve the accuracy of liver segmentation and effectively repair the discontinuity and local overlap of segmentation results.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Masamichi Miyaji

Abstract We consider spacetime initiated by a finite-sized initial boundary as a generalization of the Hartle-Hawking no-boundary state. We study entanglement entropy of matter state prepared by such spacetime. We find that the entanglement entropy for large subregion is given either by the initial state entanglement or the entanglement island, preventing the entropy to grow arbitrarily large. Consequently, the entanglement entropy is always bounded from above by the boundary area of the island, leading to an entropy bound in terms of the island. The island I is located in the analytically continued spacetime, either at the bra or the ket part of the spacetime in Schwinger-Keldysh formalism. The entanglement entropy is given by an average of complex pseudo generalized entropy for each entanglement island. We find a necessary condition of the initial state to be consistent with the strong sub-additivity, which requires that any probe degrees of freedom are thermally entangled with the rest of the system. We then find a large parameter region where the spacetime with finite-sized initial boundary, which does not have the factorization puzzle at leading order, dominates over the Hartle-Hawking no-boundary state or the bra-ket wormhole. Due to the absence of a moment of time reflection symmetry, the island in our setup is a generalization of the entanglement wedge, called pseudo entanglement wedge. In pseudo entanglement wedge reconstruction, we consider reconstructing the bulk matter transition matrix on A ∪ I, from a fine-grained state on A. The bulk transition matrix is given by a thermofield double state with a projection by the initial state. We also provide an AdS/BCFT model by considering EOW branes with corners. We also find the exponential hardness of such reconstruction task using a generalization of Python’s lunch conjecture to pseudo generalized entropy.


Author(s):  
Christian Kleinert ◽  
Carola Griehl

AbstractIn situ extraction or “milking” of microalgae is a promising approach to reduce downstream costs in order to produce low-value substances such as lipids from microalgae in an economical way. Due to its ability to secrete high amounts of long-chain hydrocarbons to an extracellular matrix, the green microalga Botryococcus braunii is suitable for the process of in situ extraction as the cost intensive steps of harvesting, dewatering, and cell disruption could be omitted. Based on a previous study investigating various B. braunii strains in terms of growth, lipid accumulation, and solvent compatibility, the B. braunii strains Showa and Bot22 (both B race) were identified as potential candidates for the process of in situ extraction. In order to prove the suitability of these two strains for the process of in situ extraction, this study first determined the optimal extraction time using short-term in situ extraction over 7 days at different starting biomass concentrations of 1.5 and 2.5 g L−1. Furthermore, both strains were treated applying the optimal extraction time in long-term in situ extractions for 30 days to confirm the results from the short-term extractions. The results indicate a strain-dependent optimal extraction time of 300 min day−1 for strain Showa and 200 min day−1 for strain Bot22. During long-term in situ extraction for 30 days, hydrocarbon productivity was 16.99 mg L−1 day−1 (10.53 mg gDW−1 day−1) for strain Showa and 14.53 mg L−1 day−1 (10.48 mg gDW−1 day−1) for strain Bot22. Furthermore, a direct correlation between hydrocarbon productivity achieved by in situ extraction and the hydrocarbon concentration in the biomass of the respective strain could be established. It could be shown that the consideration of the effective extraction time and the phase boundary area is required to calculate an extraction system independent value for the comparison of different extraction setups.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3879
Author(s):  
Nigel Van de Velde ◽  
Saška Javornik ◽  
Tilen Sever ◽  
Danaja Štular ◽  
Matic Šobak ◽  
...  

A bio-epoxy surface adhesive for adherence of the metal component species to glass substrate with desirable adhesion strength, converted controlled removal upon request, and bio-based resource inclusion was developed. For the development of resin, three different lignin-based aromatic monophenols, guaiacol, cresol, and vanillin, were used in the chemical epoxidation reaction with epichlorohydrin. The forming transformation process was studied by viscoelasticity, in situ FTIR monitoring, and Raman. Unlike other hydroxyl phenyls, guaiacol showed successful epoxide production, and stability at room temperature. Optimization of epoxide synthesis was conducted by varying NaOH concentration or reaction time. The obtained product was characterized by nuclear magnetic resonance and viscosity measurements. For the production of adhesive, environmentally problematic bisphenol A (BPA) epoxy was partially substituted with the environmentally acceptable, optimized guaiacol-based epoxy at 20, 50, and 80 wt.%. Mechanics, rheological properties, and the possibility of adhered phase de-application were assessed on the bio-substitutes and compared to commercially available polyepoxides or polyurethanes. Considering our aim, the sample composed of 80 wt.% bio-based epoxy/20 wt.% BPA thermoset was demonstrated to be the most suitable among those analyzed, as it was characterized by low BPA, desired boundary area and recoverability using a 10 wt.% acetic acid solution under ultrasound.


2021 ◽  
pp. 108118
Author(s):  
Florent Balacheff ◽  
Gil Solanes ◽  
Kroum Tzanev
Keyword(s):  

2021 ◽  
Vol 893 (1) ◽  
pp. 012055
Author(s):  
D L A Purba ◽  
I J A Saragih ◽  
D S Sosaidi

Abstract One of the important factors in weather and climate dynamics that can trigger precipitation on the coast and the surrounding area is a sea breeze. Sea breeze occurs because of differences in the surface temperature between land and sea due to solar heating which then forms a pressure gradient that leads to a land called the sea breeze circulation. An important part of sea breeze circulation is the Sea Breeze Front (SBF). SBF is a boundary area where wind from the sea direction meets the wind from the land direction, which is marked by significant changes in temperature, humidity, wind and can trigger convective activity. This study aims to determine the characteristics of the SBF on the north coast of Banten-Jakarta in 2018 which were identified using a Doppler weather radar Plan Position Indicator (PPI) product and convective activity using the Coloumn Maximum (CMAX) product. Qualitative and quantitative methods are used to determine the SBF parameters such as frequency of occurrence, onset time, duration, length, column depth, and SBF penetration, and convective activity during the occurrence of SBF. The results showed that SBF was detected more in the rainy season January, February, and December 2018, and occur between 08:08 LT and 15:20 LT. SBF can trigger the occurrence of convective clouds and affect the temperature and humidity conditions around the SBF.


Sign in / Sign up

Export Citation Format

Share Document