target holder
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6255
Author(s):  
Gabriele Sciacca ◽  
Petra Martini ◽  
Sara Cisternino ◽  
Liliana Mou ◽  
Jonathan Amico ◽  
...  

Cyclotron-based radionuclides production by using solid targets has become important in the last years due to the growing demand of radiometals, e.g., 68Ga, 89Zr, 43/47Sc, and 52/54Mn. This shifted the focus on solid target management, where the first fundamental step of the radiochemical processing is the target dissolution. Currently, this step is generally performed with commercial or home-made modules separated from the following purification/radiolabelling modules. The aim of this work is the realization of a flexible solid target dissolution system to be easily installed on commercial cassette-based synthesis modules. This would offer a complete target processing and radiopharmaceutical synthesis performable in a single module continuously. The presented solid target dissolution system concept relies on an open-bottomed vial positioned upon a target coin. In particular, the idea is to use the movement mechanism of a syringe pump to position the vial up and down on the target, and to exploit the heater/cooler reactor of the module as a target holder. All the steps can be remotely controlled and are incorporated in the cassette manifold together with the purification and radiolabelling steps. The performance of the device was tested by processing three different irradiated targets under different dissolution conditions.


2021 ◽  
Author(s):  
Md. A. Hasem

Generally two types of erosion testers are used in solid particle erosion testing: air blast erosion testers and mechanically powered erosion testers. In the first portion of this thesis, the feasibility of implementing a mechanically powered erosion tester for abrasive jet micro-machining applications using very small particles was studied. It was found that, due to the ultrahigh vacuum requirement, such a device would not be practical. Therefore, in the second part of the thesis, the designed rotary mechanism was utilized as a rotary disc target holder apparatus and blasted with a typical air blast system. The apparatus could add or deduct a tangential velocity component into the system, allowing for detailed studies of the effect that the tangential velocity component has on the erosion of borosilicate glass using 25-150 μm aluminum oxide particles. Although the tangential velocity effect has been ignored for brittle materials by most researchers, the present results show that it can have an important role in erosion rate.Generally two types of erosion testers are used in solid particle erosion testing: air blast erosion testers and mechanically powered erosion testers. In the first portion of this thesis, the feasibility of implementing a mechanically powered erosion tester for abrasive jet micro-machining applications using very small particles was studied. It was found that, due to the ultrahigh vacuum requirement, such a device would not be practical. Therefore, in the second part of the thesis, the designed rotary mechanism was utilized as a rotary disc target holder apparatus and blasted with a typical air blast system. The apparatus could add or deduct a tangential velocity component into the system, allowing for detailed studies of the effect that the tangential velocity component has on the erosion of borosilicate glass using 25-150 μm aluminum oxide particles. Although the tangential velocity effect has been ignored for brittle materials by most researchers, the present results show that it can have an important role in erosion rate.


2021 ◽  
Author(s):  
Md. A. Hasem

Generally two types of erosion testers are used in solid particle erosion testing: air blast erosion testers and mechanically powered erosion testers. In the first portion of this thesis, the feasibility of implementing a mechanically powered erosion tester for abrasive jet micro-machining applications using very small particles was studied. It was found that, due to the ultrahigh vacuum requirement, such a device would not be practical. Therefore, in the second part of the thesis, the designed rotary mechanism was utilized as a rotary disc target holder apparatus and blasted with a typical air blast system. The apparatus could add or deduct a tangential velocity component into the system, allowing for detailed studies of the effect that the tangential velocity component has on the erosion of borosilicate glass using 25-150 μm aluminum oxide particles. Although the tangential velocity effect has been ignored for brittle materials by most researchers, the present results show that it can have an important role in erosion rate.Generally two types of erosion testers are used in solid particle erosion testing: air blast erosion testers and mechanically powered erosion testers. In the first portion of this thesis, the feasibility of implementing a mechanically powered erosion tester for abrasive jet micro-machining applications using very small particles was studied. It was found that, due to the ultrahigh vacuum requirement, such a device would not be practical. Therefore, in the second part of the thesis, the designed rotary mechanism was utilized as a rotary disc target holder apparatus and blasted with a typical air blast system. The apparatus could add or deduct a tangential velocity component into the system, allowing for detailed studies of the effect that the tangential velocity component has on the erosion of borosilicate glass using 25-150 μm aluminum oxide particles. Although the tangential velocity effect has been ignored for brittle materials by most researchers, the present results show that it can have an important role in erosion rate.


2021 ◽  
Vol 217 (3) ◽  
Author(s):  
S. Maurice ◽  
R. C. Wiens ◽  
P. Bernardi ◽  
P. Caïs ◽  
S. Robinson ◽  
...  

AbstractOn the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.


2021 ◽  
Vol 385 ◽  
pp. 126980
Author(s):  
J. Krása ◽  
V. Nassisi ◽  
D. Klír

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kwinten Nelissen ◽  
Máté Liszi ◽  
Massimo De Marco ◽  
Valeria Ospina ◽  
István Drotár ◽  
...  

AbstractRecent advances on laser technology have enabled the generation of ultrashort (fs) high power (PW) laser systems. For such large scale laser facilities there is an imperative demand for high repetition rate operation in symbiosis with beamlines or end-stations. In such extreme conditions the generation of electromagnetic pulses (EMP) during high intense laser target interaction experiments can tip the scale for the good outcome of the campaign. The EMP effects are several including interference with diagnostic devices and actuators as well as damage of electrical components. The EMP issue is quite known in the picosecond (ps) pulse laser experiments but no systematic study on EMP issues at multi-Joule fs-class lasers has been conducted thus far. In this paper we report the first experimental campaign for EMP-measurements performed at the 200 TW laser system (VEGA 2) at CLPU laser center. EMP pulse energy has been measured as a function of the laser intensity and energy together with other relevant quantities such as (i) the charge of the laser-driven protons and their maximum energy, as well as (ii) the X-ray Kα emission coming from electron interaction inside the target. Analysis of experimental results demonstrate (and confirm) a direct correlation between the measured EMP pulse energy and the laser parameters such as laser intensity and laser energy in the ultrashort pulse duration regime. Numerical FEM (Finite Element Method) simulations of the EMP generated by the target holder system have been performed and the simulations results are shown to be in good agreement with the experimental ones.


2019 ◽  
Vol 322 (3) ◽  
pp. 1833-1839 ◽  
Author(s):  
Szabolcs Osváth ◽  
Jixin Qiao ◽  
Xiaolin Hou

Abstract 93Mo is an important long-lived radionuclide in nuclear waste, and is required to be measured during the characterization of decommissioning waste. However, no commercial 93Mo solution is available to be calibrated and used as standard in the analysis of nuclear waste. This work presents a method for separation of 93Mo from Nb metal used in cyclotron as a target holder and irradiated with protons for long time. The separation of 93Mo from Nb matrix was implemented by combination of precipitation and chromatographic separation. The Nb matrix was first removed by precipitating oxides-hydroxides of Nb (e.g. Nb2O5) and then by Fe(OH)3 co-precipitation; Mo in the solution was purified using an alumina (Al2O3) column. A decontamination factor of ca. 105 was achieved for Nb. A pure carrier-free 93Mo solution was successfully prepared, and the 93Mo purity was verified by liquid scintillation spectrometry.


Instruments ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Sun Chan ◽  
David Cryer ◽  
Roger I. Price

A 3D-printed metal solid target using additive manufacturing process is a cost-effective production solution to complex and intricate target design. The initial proof-of-concept prototype solid target holder was 3D-printed in cast alloy, Al–7Si–0.6Mg (A357). However, given the relatively low thermal conductivity for A357 (max, 160 W/m·K), replication of the solid target holder in sterling silver (SS925) with higher thermal conductivity (max, 361 W/m·K) was investigated. The SS925 target holder enhances the cooling efficiency of the target design, thus achieving higher target current during irradiation. A validation production of 64Cu using the 3D-printed SS925 target holder indicated no loss of enriched 64Ni from proton bombardment above 80 µA, at 11.5 MeV.


2018 ◽  
Vol 167 ◽  
pp. 04006
Author(s):  
Domenico Delle Side ◽  
Anna Paola Caricato ◽  
Josef Krása ◽  
Vincenzo Nassisi

The exposure of a target to a focused laser beam results in the occurrence of a time-varying current between the target itself and the grounded vacuum chamber. This current is composed by three distinct phases, namely the ignition phase, in which the laser pulse drives the electron emission, while electrons coming from the ground through the target holder balance the positive charge generated on the target. The active phase appears at post-pulse times and it is characterized by the presence of peaked structures in the time-resolved current, representing characteristics of the target composition. Lastly, the afterglow phase is determined by a current of electrons flowing from the target to the ground. During the active phase of the target current resulting from polymers ablation with an UV KrF laser, negative target current peaks are observed, whose origin is still unknown. We investigate the dependence of these current structures on the dimensions of the target, using ultra-high molecular weight polyethylene disks of different thickness.


2018 ◽  
Vol 167 ◽  
pp. 03009 ◽  
Author(s):  
Massimo De Marco ◽  
Josef Krása ◽  
Jakub Cikhardt ◽  
Fabrizio Consoli ◽  
Riccardo De Angelis ◽  
...  

During the interaction of high intense laser pulse with solid target, a large amount of hot electrons is produced and a giant Electromagnetic Pulse (EMP) is generated due to the current flowing into the system target–target holder, as well as due to the escaping charged particles in vacuum. EMP production for different target materials is investigated inside and outside the target chamber, using monopole antenna, super wide-band microstrip antenna and Moebius antenna. The EMP consists in a fast transient magnetic field lasting hundreds of nanosecond with frequencies ranging from MHz to tens of GHz. Measurements of magnetic field and return target current in the range of kA were carried out by an inductive target probe (Cikhardt J. et al. Rev. Sci. Instrum. 85 (2014) 103507).


Sign in / Sign up

Export Citation Format

Share Document