magnetic anisotropy energy
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 36)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 5 (4) ◽  
pp. 229-235
Author(s):  
T. M. Inerbaev ◽  
A. U. Abuova ◽  
A. K. Dauletbekova ◽  
F. U. Abuova ◽  
G. A. Kaptagay ◽  
...  

The magnetic anisotropy energy and the stability of crystal modifications of D03 and L21 of Fe3Ga compounds are studied with the density functional theory methods. The magnetic anisotropy energy of the D03 structure is more than twice the same value for the L21 structure. The features in the electronic structure lead to the difference in the magnitude of spin-orbit interaction, explaining the found effect. The L21 structure is more thermodynamically stable in the entire range of the considered pressures. Under pressure, the considered crystal modifications of Fe3Ga lose their stability due to the appearance of imaginary frequencies in their phonon spectra.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shiu-Ming Huang ◽  
Pin-Cing Wang ◽  
Hao-Lun Jian ◽  
Mitch M. C. Chou

AbstractThe magnetic susceptibility reveals a discontinuity at Néel temperature and a hysteresis loop with low coercive field was observed below Néel temperature. The magnetic susceptibility of zero field cool and field cool processes coincide at a temperature above the discontinuity, and they split at temperature blow the discontinuity. The magnetic susceptibility splitting is larger at lower external magnetic fields. No more magnetic susceptibility splitting was observed at a magnetic field above 7000 Oe which is consistent with the magnetic anisotropy energy. Our study supports that these magnetic susceptibility characteristics originate from an antiferromagnetic order accompanied by weak ferromagnetism.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Wei-En Ke ◽  
Pao-Wen Shao ◽  
Chang-Yang Kuo ◽  
Haili Song ◽  
Rong Huang ◽  
...  

AbstractRecent advances in the design and development of magnetic storage devices have led to an enormous interest in materials with perpendicular magnetic anisotropy (PMA) property. The past decade has witnessed a huge growth in the development of flexible devices such as displays, circuit boards, batteries, memories, etc. since they have gradually made an impact on people’s lives. Thus, the integration of PMA materials with flexible substrates can benefit the development of flexible magnetic devices. In this study, we developed a heteroepitaxy of BaFe12O19 (BaM)/muscovite which displays both mechanical flexibility and PMA property. The particular PMA property was characterized by vibrating sample magnetometer, magnetic force microscopy, and x-ray absorption spectroscopy. To quantify the PMA property of the system, the intrinsic magnetic anisotropy energy density of ~2.83 Merg cm−3 was obtained. Furthermore, the heterostructure exhibits robust PMA property against severe mechanical bending. The findings of this study on the BaM/muscovite heteroepitaxy have several important implications for research in next-generation flexible magnetic recording devices and actuators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongwook Kim ◽  
Changhoon Lee ◽  
Bo Gyu Jang ◽  
Kyoo Kim ◽  
Ji Hoon Shim

AbstractMagnetic anisotropy energy (MAE) is one of the most important properties in two-dimensional magnetism since the magnetization in two dimension is vulnerable to the spin rotational fluctuations. Using density functional theory calculation, we show that perpendicular electric field dramatically enhances the in-plane and out-of-plane magnetic anisotropies in Fe3GeTe2 and Fe4GeTe2 monolayers, respectively, allowing the change of easy axis in both systems. The changes of the MAE under the electric field are understood as the result of charge redistribution inside the layer, which is available due to the three-dimensional (3D) network of Fe atoms in the monolayers. As a result, we suggest that due to the unique structure of FenGeTe2 compounds composed by peculiar 3D networks of metal atoms, the MAE can be dramatically changed by the external perpendicular electric field.


Inorganics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 64
Author(s):  
Xia-Li Ding ◽  
Qian-Cheng Luo ◽  
Yuan-Qi Zhai ◽  
Qian Zhang ◽  
Lei Tian ◽  
...  

A solvent effect towards the performance of two single-molecule magnets (SMMs) was observed. The tetrahydrofuran and toluene solvents can switch the equatorial coordinated 4-Phenylpyridine (4-PhPy) molecules from five to four, respectively, in [Dy(OtBu)2(4-PhPy)5]BPh41 and Na{[Dy(OtBu)2(4-PhPy)4][BPh4]2}∙2thf∙hex 2. This alternation significantly changes the local coordination symmetry of the Dy(III) center from D5h to D4h for 1 and 2, seperately. Magnetic studies show that the magnetic anisotropy energy barrier of 2 is higher than that of 1, while the relation of blocking temperature is just on the contrary due to the symmetry effect. The calculations of the electrostatic potential successfully explained the driving force of solvents for the molecular structure change, confirming the feasibility of adjusting the performance of SMMs via diverse solvents.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2604
Author(s):  
Sungjung Joo ◽  
Rekikua Sahilu Alemayehu ◽  
Jong-Guk Choi ◽  
Byong-Guk Park ◽  
Gyung-Min Choi

Metallic ferrimagnets with rare earth-transition metal alloys can provide novel properties that cannot be obtained using conventional ferromagnets. Recently, the compensation point of ferrimagnets, where the net magnetization or net angular momentum vanishes, has been considered a key aspect for memory device applications. For such applications, the magnetic anisotropy energy and damping constant are crucial. In this study, we investigate the magnetic anisotropy and damping constant of a GdCo alloy, with a Gd concentration of 12–27%. By analyzing the equilibrium tilting of magnetization as a function of the applied magnetic field, we estimate the uniaxial anisotropy to be 1–3 × 104 J m−3. By analyzing the transient dynamics of magnetization as a function of time, we estimate the damping constant to be 0.08–0.22.


2021 ◽  
Vol 16 (3) ◽  
pp. 517-524
Author(s):  
Poppy Puspitasari ◽  
A. Muhammad ◽  
A. A. Permanasari ◽  
T. Pasang ◽  
S. M. S. N. S. Zahari ◽  
...  

Samarium cobalt is known as super high density magnetic material with large magnetic anisotropy energy. Samarium–cobalt exhibits manipulative magnetic properties as a rare-earth material which has different properties in a low sintering temperature. It is therefore of paramount importance to investigate samarium cobalt (Sm2Co17) magnetic properties in the low temperature sintering condition. Sm2Co17, which is utilized in this research, is synthesized via the sol–gel process at sintering temperatures of 400, 500, and 600 °C. Subsequently, the crystallites indicate the formation of a single-phase Sm2Co17 on all the samples in all temperature variations. Moreover, the peaks in the X-ray diffraction analysis of crystallite sizes calculated using the Scherrer equation are 17.730, 15.197, and 13.296 nm at 400, 500, and 600 °C. Through scanning electron microscopy, the particles are found to be relatively large and agglomerated, with average sizes of 143.65, 168.78, and 237.26 nm. The functional groups are also analyzed via Fourier-transform infrared spectroscopy, which results in the appearance of several bonds in the samples, for example, alkyl halides, alkanes, and esters with aromatic functional groups on the fingerprint area and alkynes, alkyl halides, and alcohol functional groups at a wavelength of above 1500 cm. The test results of the magnetic properties using vibrating-sample magnetometer (VSM) revealed high coercivity and retentivity in the samples sintered at 400 °C. However, the highest saturation occurs in the samples sintered at 600 ℃. At a low sintering temperature (below 1000 °C), samarium cobalt shows as the soft magnetic material. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Y. Hu ◽  
S. Jin ◽  
Z. F. Luo ◽  
H. H. Zeng ◽  
J. H. Wang ◽  
...  

AbstractA pressing need in low energy spintronics is two-dimensional (2D) ferromagnets with Curie temperature above the liquid-nitrogen temperature (77 K), and sizeable magnetic anisotropy. We studied Mn3Br8 monolayer which is obtained via inducing Mn vacancy at 1/4 population in MnBr2 monolayer. Such defective configuration is designed to change the coordination structure of the Mn-d5 and achieve ferromagnetism with sizeable magnetic anisotropy energy (MAE). Our calculations show that Mn3Br8 monolayer is a ferromagnetic (FM) half-metal with Curie temperature of 130 K, large MAE of − 2.33 meV per formula unit, and atomic magnetic moment of 13/3μB for the Mn atom. Additionally, Mn3Br8 monolayer maintains to be FM under small biaxial strain, whose Curie temperature under 5% compressive strain is 160 K. Additionally, both biaxial strain and carrier doping make the MAE increases, which mainly contributed by the magneto-crystalline anisotropy energy (MCE). Our designed defective structure of MnBr2 monolayer provides a simple but effective way to achieve ferromagnetism with large MAE in 2D materials.


Sign in / Sign up

Export Citation Format

Share Document