Semiconductor Physics Quantum Electronics & Optoelectronics
Latest Publications


TOTAL DOCUMENTS

1753
(FIVE YEARS 182)

H-INDEX

15
(FIVE YEARS 3)

Published By Co. Ltd. Ukrinformnauka

1605-6582, 1560-8034

2021 ◽  
Vol 24 (04) ◽  
pp. 413-418
Author(s):  
O.V. Kovalchuk ◽  
◽  
I.P. Studenyak ◽  
T.M. Kovalchuk ◽  
E.A. Ayryan ◽  
...  

At the temperature 293 K, the influence of two types of nanoimpurities (carbon multiwall nanotubes and C60 fullerene) both separately and together on the dielectric properties of Shell oil transformer oil has been studied. It has been shown that these impurities do not significantly effect on the value of the dielectric permittivity of Shell oil, but more significantly increase its conductivity. It has been found that in the presence of nanotubes inside Shell oil, the dependence of its electrical conductivity on the fullerene concentration is nonmonotonic. The samples with the fullerene concentration 100 ppm have the highest conductivity. At the fullerene concentration 300 ppm, the conductivity of Shell oil with the impurities of carbon nanotube and C60 fullerene becomes almost equal to the electrical conductivity of Shell oil only with the impurities of carbon nanotubes. It has been suggested that C60 fullerene can be used to reduce the electrical conductivity of Shell oil with magnetic nanoparticles required to increase the cooling efficiency of transformers under the action of their own magnetic field.


2021 ◽  
Vol 24 (04) ◽  
pp. 407-412
Author(s):  
A.V. Naumov ◽  
◽  
V.V. Kaliuzhnyi ◽  
S.A. Vitusevich ◽  
H. Hardtdegen ◽  
...  

In this work, we have investigated the features of electron transport in AlGaN/GaN transistor-like heterostructures with nanowires of different width. These nanostructures are studied extensively because of their great electronic and sensing advantages for electronic biosensor applications. We study the depletion effects and impact of ultraviolet excitation on the electron transport in sets of nanowires of different width from 1110 down to 185 nm. We have found significant difference in electrical characteristic’s behavior between wide (1110…480 nm) and narrow (280…185 nm) nanowires and have observed regions related to space-charge-limited transport for the narrowest nanowires. Also, we obtained evident dependence of nanowire’s current-voltage characteristics on the wavelength and energy of UV excitation. External UV excitation allows us to control the depletion widths in nanowires and effectively tune space-charge-limited transport.


2021 ◽  
Vol 24 (04) ◽  
pp. 431-435
Author(s):  
A. Biswas ◽  
◽  
A. Dakova ◽  
S. Khan ◽  
M. Ekici ◽  
...  

This paper recovers cubic-quartic bright optical solitons with perturbed Fokas–Lenells equation. The Hamiltonian perturbation terms appear with maximal permissible intensity. The semi-inverse variational principle is employed to retrieve such solitons.


2021 ◽  
Vol 24 (04) ◽  
pp. 335-361
Author(s):  
A.M. Goriachko ◽  
◽  
M.V. Strikha ◽  
◽  

In this paper, the novel cold electron emitters based on nanostructured SiC layers covering the Si(001) substrate have been proposed. Their main advantage is an extremely simple and cost-effective manufacturing process based on the standard microelectronics-grade silicon wafers with no ultra-high vacuum required and no complicated chemical deposition processes or toxic chemicals involved. It integrates within a single technological step both the SiC growth and nanostructuring the surface in the form of nanosized protrusions, which is extremely beneficial for cathode applications. A simple mathematical model predicts field emission current densities and turn-on electric fields, which would allow practical device applications. According to our estimations, emission currents in the milli-Amp range can be harvested from one square centimeter of the cathode surface with electric field close to 107 V/m. So, the nanostructured SiC can be the promising material for the cold electron emitters.


2021 ◽  
Vol 24 (04) ◽  
pp. 390-398
Author(s):  
O.V. Melnichuk ◽  
◽  
N.O. Korsunska ◽  
I.V. Markevich ◽  
V.V. Boyko ◽  
...  

Undoped and Mn-doped ZnO ceramics were theoretically and experimentally investigated using specular infrared reflection method. It was shown that infrared reflection spectra can be modeled using the parameters explored for ZnO single crystals. For ceramic samples, it was shown that ZnO grains with orientation of the C-axis along the normal to the electric field ( ) give the main contribution to IR reflection spectra. It has been ascertained that the surface roughness is manifested in these spectra mainly within the range 450…550 cm–1 giving negligible effect for the frequencies above longitudinal phonon frequency. This allowed the electrophysical parameters of ZnO crystallites to be evaluated. In the case of undoped ceramics, the obtained results were found to be consistent with the values of direct current measurements. This finding supports the utility of infrared spectroscopy for determination of the electrophysical parameters of polycrystalline ceramic materials. For Mn-doped ceramic samples, the conductivity value measured using the direct current method was found to be essentially lower than those determined from simulation of infrared reflection spectra. This phenomenon was explained by barrier formation at the grain boundaries in Mn-doped ZnO ceramics.


2021 ◽  
Vol 24 (04) ◽  
pp. 457-465
Author(s):  
H. Amar ◽  
◽  
M. Amir ◽  
H. Ghodbane ◽  
B. Babes ◽  
...  

In this work, we carried out the study of electrical characteristics with two-dimensional numerical analysis by using the Aided Design (TCAD Silvaco) software for CdS/CuInGaSe2 (CIGS) thin solar cells. Their structure is composed of a thin CIGS solar cell in the configuration: ZnO(200 nm)/CdS(50 nm)/CIGS (350 nm)/Mo. Then ZnO is used for conductive oxide contacted transparent front of the cell. For rear contact, the molybdenum (Mo) is used. The layer of the CdS window and the shape of the CIGS absorber is the n-p semiconductor heterojunction. The performance of the cell was evaluated by applying the defects created in the grain joints of polycrystalline CdS and CIGS material and CIGS/CdS interface in the model, and the physical parameters used in the TCAD simulations have been calibrated to reproduce experimental data. The J–V characteristics are simulated under AM1.5 illumination conditions. The conversion efficiency (η) 20.10% has been reached, and the other characteristic parameters have been simulated: the open-circuit voltage (Voc) is 0.68 V, the circuit-current density (Jsc) is equal to 36.91 mA/cm2, and the form factor (FF) is 0.80. The simulation results showed that the molar fraction x of the CIGS layer has an optimal value around 0.31 corresponding to a gap energy of 1.16 eV, this result is in very good agreement with that found experimentally.


2021 ◽  
Vol 24 (04) ◽  
pp. 444-449
Author(s):  
V.P. Maslov ◽  
◽  
V.O. Morozhenko ◽  
N.V. Kachur ◽  
◽  
...  

The dependences of the thermal radiation (TR) lines contrast and amplitude of the systems (photonic structure)/substrate on the optical characteristics of both the photonic structure and the substrate have been investigated theoretically and experimentally. As it has been ascertained, these dependences demonstrate non-monotonic behavior, and the characteristics of the system TR can both increase and decrease depending on the ratio of individual optical parameters of the system components. The results of theoretical research were confirmed by experimental studies of TR systems Ge/GaAs, Ge/GaAs/Al, GaAs/Au and GaAs/(opaque substrate). The results of the research can be used in the development of narrow-band emitters for the middle and far IR range, which can be applied in the optical infrared devices for a wide range of applications.


2021 ◽  
Vol 24 (04) ◽  
pp. 362-371
Author(s):  
V.P. Kladko ◽  
◽  
V.P. Melnik ◽  
О.I. Liubchenko ◽  
B.M. Romanyuk ◽  
...  

VOx films deposited using the multistep method have been investigated. These films were deposited by repeating the two-stage method of low-temperature deposition – low-temperature annealing. The structure and characteristics of VOx thin films have been studied. Taking into account the obtained results, theoretical modeling of the structure was performed and the parameters of the metal-insulator transition have been calculated.


2021 ◽  
Vol 24 (04) ◽  
pp. 399-406
Author(s):  
A.M. Goriachko ◽  
◽  
M.V. Strikha ◽  
◽  

This paper presents the fabrication procedure of TiO2 passivated field plate Schottky diode and gives a comparison of Ni/Au/n-GaN Schottky barrier diodes without field plate and with field plate of varying diameters from 50 to 300 µm. The influence of field oxide (TiO2) on the leakage current of Ni/Au/n-GaN Schottky diode was investigated. This suggests that the TiO2 passivated structure reduces the reverse leakage current of Ni/Au/n-GaN Schottky diode. Also, the reverse leakage current of Ni/Au/n-GaN Schottky diodes decreases as the field plate length increases. The temperature-dependent electrical characteristics of TiO2 passivated field plate Ni/Au/n-GaN Schottky diodes have shown an increase of barrier height within the temperature range 300…475 K.


2021 ◽  
Vol 24 (04) ◽  
pp. 378-389
Author(s):  
D. Belfennache ◽  
◽  
D. Madi ◽  
R. Yekhlef ◽  
L. Toukal ◽  
...  

The main objective of this work is to investigate the effect of thermal annealing in forming gas atmosphere on the mechanism of deactivation and reactivation of phosphorus in silicon-based Schottky diodes. Firstly, the microwave plasma power, initial phosphorus concentration in the samples and hydrogen flux were fixed as 650 W, 1015 cm–3, and 30 sccm, respectively, to investigate the behavior of different working parameters of diodes, specifically the duration and temperature of hydrogenation. Secondly, few samples hydrogenated at 400 °C for 1 h were annealed under the forming gas (10% H2 + 90% N2) within the temperature range from 100 to 700 °C for 1 h. The profiles of active phosphorus concentration were monitored by evaluating the change in concentration of phosphorus after hydrogenation or thermal annealing in a forming gas environment through capacitance-voltage measurements. The obtained results depict the temperature and duration of hydrogenation, which ultimately reveals the complex behavior of phosphorous and hydrogen in silicon. However, the phosphorus passivation rate is homogeneous over all the depths measured at 400 °C. The thermal annealing in a forming gas indicates the increase in passivation rate of phosphorus as a function of annealing temperature, till the passivation rate attains saturation in the sample annealed at 400 °C. At higher temperatures, a decrease in the concentration of phosphorous-hydrogen complexes is observed due to the dissociation of these complexes and reactivation of phosphorus under thermal effect.


Sign in / Sign up

Export Citation Format

Share Document