neumann eigenvalues
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Zeév Rudnick ◽  
Igor Wigman ◽  
Nadav Yesha

AbstractLet $$\Omega {\subset } {\mathbb {R}}^2$$ Ω ⊂ R 2 be a bounded planar domain, with piecewise smooth boundary $$\partial \Omega $$ ∂ Ω . For $$\sigma >0$$ σ > 0 , we consider the Robin boundary value problem $$\begin{aligned} -\Delta f =\lambda f, \qquad \frac{\partial f}{\partial n} + \sigma f = 0 \text{ on } \partial \Omega \end{aligned}$$ - Δ f = λ f , ∂ f ∂ n + σ f = 0 on ∂ Ω where $$ \frac{\partial f}{\partial n} $$ ∂ f ∂ n is the derivative in the direction of the outward pointing normal to $$\partial \Omega $$ ∂ Ω . Let $$0<\lambda ^\sigma _0\le \lambda ^\sigma _1\le \ldots $$ 0 < λ 0 σ ≤ λ 1 σ ≤ … be the corresponding eigenvalues. The purpose of this paper is to study the Robin–Neumann gaps $$\begin{aligned} d_n(\sigma ):=\lambda _n^\sigma -\lambda _n^0 . \end{aligned}$$ d n ( σ ) : = λ n σ - λ n 0 . For a wide class of planar domains we show that there is a limiting mean value, equal to $$2{\text {length}}(\partial \Omega )/{\text {area}}(\Omega )\cdot \sigma $$ 2 length ( ∂ Ω ) / area ( Ω ) · σ and in the smooth case, give an upper bound of $$d_n(\sigma )\le C(\Omega ) n^{1/3}\sigma $$ d n ( σ ) ≤ C ( Ω ) n 1 / 3 σ and a uniform lower bound. For ergodic billiards we show that along a density-one subsequence, the gaps converge to the mean value. We obtain further properties for rectangles, where we have a uniform upper bound, and for disks, where we improve the general upper bound.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ran Zhang ◽  
Chuan-Fu Yang

AbstractWe prove that if the Neumann eigenvalues of the impulsive Sturm–Liouville operator {-D^{2}+q} in {L^{2}(0,\pi)} coincide with those of the Neumann Laplacian, then {q=0}.


Author(s):  
Alexandre Girouard ◽  
Antoine Henrot ◽  
Jean Lagacé

AbstractWe study a new link between the Steklov and Neumann eigenvalues of domains in Euclidean space. This is obtained through an homogenisation limit of the Steklov problem on a periodically perforated domain, converging to a family of eigenvalue problems with dynamical boundary conditions. For this problem, the spectral parameter appears both in the interior of the domain and on its boundary. This intermediary problem interpolates between Steklov and Neumann eigenvalues of the domain. As a corollary, we recover some isoperimetric type bounds for Neumann eigenvalues from known isoperimetric bounds for Steklov eigenvalues. The interpolation also leads to the construction of planar domains with first perimeter-normalized Stekov eigenvalue that is larger than any previously known example. The proofs are based on a modification of the energy method. It requires quantitative estimates for norms of harmonic functions. An intermediate step in the proof provides a homogenisation result for a transmission problem.


2020 ◽  
Vol 10 (4) ◽  
Author(s):  
Vladimir Gol’dshtein ◽  
Ritva Hurri-Syrjänen ◽  
Valerii Pchelintsev ◽  
Alexander Ukhlov

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yan-Hsiou Cheng

Abstract The paper is concerned with the Neumann eigenvalues for second-order Sturm–Liouville difference equations. By analyzing the new discriminant function, we show the interlacing properties between the periodic, antiperiodic, and Neumann eigenvalues. Moreover, when the potential sequence is symmetric and symmetric monotonic, we show the order relation between the first Dirichlet eigenvalue and the second Neumann eigenvalue, and prove that the minimum of the first Neumann eigenvalue gap is attained at the constant potential sequence.


2020 ◽  
Vol 406 ◽  
pp. 109211 ◽  
Author(s):  
Habib Ammari ◽  
Kthim Imeri ◽  
Nilima Nigam
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
pp. 337-353
Author(s):  
Vladimir Gol'dshtein ◽  
Valerii Pchelintsev ◽  
Alexander Ukhlov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document