constrained minimization
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 24)

H-INDEX

31
(FIVE YEARS 0)

Author(s):  
Barbara Kaltenbacher ◽  
Kha Van Huynh

AbstractIn this paper we study the formulation of inverse problems as constrained minimization problems and their iterative solution by gradient or Newton type methods. We carry out a convergence analysis in the sense of regularization methods and discuss applicability to the problem of identifying the spatially varying diffusivity in an elliptic PDE from different sets of observations. Among these is a novel hybrid imaging technology known as impedance acoustic tomography, for which we provide numerical experiments.


2021 ◽  
Vol 56 (3) ◽  
pp. 57-77
Author(s):  
Ayman Homda Mohamed ◽  
Hany Ramdan Dwidar ◽  
Inal Adham ◽  
Abd-Elazaz Bakry ◽  
Ahmed El-Raffie

Abstract In this paper, constrained minimization for the point of closest approach of two conic sections is developed. For this development, we considered the nine cases of possible conics, namely, (elliptic–elliptic), (elliptic–parabolic), (elliptic–hyperbolic), (parabolic–elliptic), (parabolic–parabolic), (parabolic–hyperbolic), (hyperbolic–elliptic), (hyperbolic–parabolic), and (hyperbolic–hyperbolic). The developments are considered from two points of view, namely, analytical and computational. For the analytical developments, the literal expression of the minimum distance equation (S) and the constraint equation (G), including the first and second derivatives for each case, are established. For the computational developments, we construct an efficient algorithm for calculating the minimum distance by using the Lagrange multiplier method under the constraint on time. Finally, we compute the closest distance S between two conics for some orbits. The accuracy of the solutions was checked under the conditions that L| solution ≤ ɛ1; G| solution ≤ ɛ2, where ɛ1,2 < 10−10. For the cases of (parabolic–parabolic), (parabolic–hyperbolic), and (hyperbolic–hyperbolic), we studied thousands of comets, but the condition of the closest approach was not met.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 890
Author(s):  
Suthep Suantai ◽  
Kunrada Kankam ◽  
Prasit Cholamjiak

In this research, we study the convex minimization problem in the form of the sum of two proper, lower-semicontinuous, and convex functions. We introduce a new projected forward-backward algorithm using linesearch and inertial techniques. We then establish a weak convergence theorem under mild conditions. It is known that image processing such as inpainting problems can be modeled as the constrained minimization problem of the sum of convex functions. In this connection, we aim to apply the suggested method for solving image inpainting. We also give some comparisons to other methods in the literature. It is shown that the proposed algorithm outperforms others in terms of iterations. Finally, we give an analysis on parameters that are assumed in our hypothesis.


Sign in / Sign up

Export Citation Format

Share Document