The data-oriented paradigm has proven to be fundamental for the technological transformation process that characterizes Industry 4.0 (I4.0) so that big data and analytics is considered a technological pillar of this process. The goal of I4.0 is the implementation of the so-called Smart Factory, characterized by Intelligent Manufacturing Systems (IMS) that overcome traditional manufacturing systems in terms of efficiency, flexibility, level of integration, digitalization, and intelligence. The literature reports a series of system architecture proposals for IMS, which are primarily data driven. Many of these proposals treat data storage solutions as mere entities that support the architecture’s functionalities. However, choosing which logical data model to use can significantly affect the performance of the IMS. This work identifies the advantages and disadvantages of relational (SQL) and non-relational (NoSQL) data models for I4.0, considering the nature of the data in this process. The characterization of data in the context of I4.0 is based on the five dimensions of big data and a standardized format for representing information of assets in the virtual world, the Asset Administration Shell. This work allows identifying appropriate transactional properties and logical data models according to the volume, variety, velocity, veracity, and value of the data. In this way, it is possible to describe the suitability of relational and NoSQL databases for different scenarios within I4.0.