line switching
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 30)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 7 (4) ◽  
pp. 85-94
Author(s):  
S. Ivanov

The article presents the main directions of the qualitative and quantitative assessment of sustainability in the field of infocommunications, shows the differences in approaches to the definition of sustainability. A method is proposed that differs from the known well-grounded application of the provisions of the theory of random impulse flows. The generalized impulse flow describes the robustness of data transmission in the information direction. The estimation method allows one to take into account both the states of the elements of a composite channel, represented by impulse flows of failures and restorations, and transient processes and sub-processes of information exchange (transmission over a communication line, switching, storage in memory, destructive influences, etc.), represented by separate impulse streams. The variability of the composition of the impulse streams makes it possible to increase the accuracy and reliability of the assessment.


Author(s):  
Majid Heidarifar ◽  
Panagiotis Andrianesis ◽  
Pablo Ruiz ◽  
Michael C. Caramanis ◽  
Ioannis Ch. Paschalidis

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6652
Author(s):  
Diego Carrión ◽  
Edwin García ◽  
Manuel Jaramillo ◽  
Jorge W. González

In this research, an alternative methodology is proposed for the location of Static VAR Compensators (SVC) in power systems, considering the reconfiguration of reactive power flows through the optimal switching of the transmission stage, which resembles the contingency restriction N-1 usually considered in transmission expansion planning. Based on this methodology, the contingency index was determined, which made it possible to determine which is the contingency that generates the greatest voltage degradation in the system. For the quantification of reactive flows, optimal AC power flows were used, which minimize the operating costs of the power system subject to transmission line switching restrictions, line charge-ability, voltages and node angles. To determine the node in which the compensation should be placed, the contingency index criterion was used, verifying the voltage profile in the nodes. The proposed methodology was tested in the IEEE test systems of 9, 14 nodes and large-scale systems of 200, 500 and 2000 bus-bars; to verify that the proposed methodology is adequate, the stability of the EPS was verified. Finally, the model allows satisfactorily to determine the node in which the SVC is implemented and its compensation value.


2021 ◽  
Author(s):  
Evangelos Pompodakis ◽  
Georgios C. Kryonidis ◽  
Minas Alexiadis

This paper deals with a new line-switching method that facilitates the network reconfiguration of islanded microgrids. Its distinct features include the ability to handle network asymmetries and the minimization of the line current during the switching action. This is attained by developing a sensitive-based three-phase model predictive method to determine the operating set-points of the distributed generators (DGs) that minimize the current of the candidate line participating in the switching action. These set-points correspond to the positive-sequence powers as well as the negative- and zero-sequence currents of all DGs. Furthermore, the network constraints such as voltage limits and power limits of DGs are always satisfied. Simulations are performed in a balanced 33-bus islanded network as well as in the unbalanced IEEE 8500-node network to evaluate the performance of the proposed method.


2021 ◽  
Author(s):  
Evangelos Pompodakis ◽  
Georgios C. Kryonidis ◽  
Minas Alexiadis

This paper deals with a new line-switching method that facilitates the network reconfiguration of islanded microgrids. Its distinct features include the ability to handle network asymmetries and the minimization of the line current during the switching action. This is attained by developing a sensitive-based three-phase model predictive method to determine the operating set-points of the distributed generators (DGs) that minimize the current of the candidate line participating in the switching action. These set-points correspond to the positive-sequence powers as well as the negative- and zero-sequence currents of all DGs. Furthermore, the network constraints such as voltage limits and power limits of DGs are always satisfied. Simulations are performed in a balanced 33-bus islanded network as well as in the unbalanced IEEE 8500-node network to evaluate the performance of the proposed method.


Author(s):  
Hefei Ruan ◽  
Jianqiang Yu ◽  
Yayun Wu ◽  
Xiaojun Tang ◽  
Jinghe Yuan ◽  
...  

Clathrin- and caveolae-mediated endocytosis are the most commonly used pathways for the internalization of cell membrane receptors. However, due to their dimensions are within the diffraction limit, traditional fluorescence microscopy cannot distinguish them and little is known about their interactions underneath cell membrane. In this study, we proposed the line-switching scanning imaging mode for dual-color triplet-state relaxation (T-Rex) stimulated emission depletion (STED) super-resolution microscopy. With this line-switching mode, the cross-talk between the two channels, the side effects from pulse picker and image drift in frame scanning mode can be effectively eliminated. The dual-color super-resolution imaging results in mixed fluorescent beads validated the excellent performance. With this super-resolution microscope, not only the ring-shaped structure of clathrin and caveolae endocytic vesicles, but also their semi-fused structures underneath the cell membrane were distinguished clearly. The resultant information will greatly facilitate the study of clathrin- and caveolae-mediated receptor endocytosis and signaling process and also our home-built dual-color T-Rex STED microscope with this line-switching imaging mode provides a precise and convenient way to study subcellular-scale protein interactions.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3281
Author(s):  
Paul Masache ◽  
Diego Carrión ◽  
Jorge Cárdenas

The reliability of the electrical system is a fundamental study that is carried out to determine the possible deficiencies that an electrical system can have in case of failures, since a failure can cause disturbances, power cuts, and load disconnections. For this reason, Optimal Transmission Switching (OTS) with Optimal AC Power Flows (OPF-AC) is used to reduce disturbances when faults occur and minimize equipment load and disconnections, but OTS offers possible switches in order to make it possible to reduce the damage that can be done for a fault with operating limitations in voltage, power, and angular deviation. However, to have a complete study, it is proposed to use a reliability analysis through contingency ranking to know the risks that a switched system may have at the time of simultaneous or consecutive failures. In addition, a load capacity investigation is conducted to determine if the transmission lines are within their operating limits. The study presents an analysis of the behavior of the switched system and an adequate operation for the mitigation of failures in the system through the switching of transmission lines with analysis of load capacity and reliability. The results presented by the proposed methodology will be compared with Matlab’s Matpower simulation package.


Sign in / Sign up

Export Citation Format

Share Document