optical bloch equations
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zeeshan Ali Safdar Jadoon ◽  
Heung-Ryoul Noh ◽  
Jin-Tae Kim

AbstractIn this study, optical Bloch equations with and without neighboring hyperfine states near the degenerate two-level system (DTLS) in the challenging case of $$^{85}$$ 85 Rb D2 transition, which involves the Doppler broadening effect, are solved. The calculated spectra agree well with the experimental results obtained based on the coupling-probe scheme with orthogonal linear polarizations of the coupling and probe fields. The mechanisms of electromagnetically induced absorption (electromagnetically induced transparency) for the open $$F_g=3 \rightarrow F_e=2$$ F g = 3 → F e = 2 and 3 transitions (open $$F_g=2 \rightarrow F_e=2$$ F g = 2 → F e = 2 and 3 transitions) are determined to be the effect of the strong closed $$F_g=3 \rightarrow F_e=4$$ F g = 3 → F e = 4 transition line (strong closed $$F_g=2 \rightarrow F_e=1$$ F g = 2 → F e = 1 transition line); this finding is based on a comparison between the calculated absorption profiles of the DTLS without neighboring states and those of all levels with neighboring states, depending on the coupling and probe power ratios. Furthermore, based on the aforementioned comparison, the crucial factors that enhance or reduce the coherence effects and lead to the transformation between electromagnetically induced absorption and electromagnetically induced transparency, are (1) the power ratios between the coupling and probe beams, (2) the openness of the excited state, and (3) effects of the neighboring states due to Doppler broadening in a real atomic system.


2021 ◽  
Author(s):  
Zeeshan Ali Safdar Jadoon ◽  
Heung-Ryoul Noh ◽  
Jin-Tae Kim

Abstract Optical Bloch equations with and without neighboring hyperfine states near the degenerate two-level system (DTLS) in the challenging case of 85Rb D2 transition that involves the Doppler broadening effect are solved herein. The calculated spectra agree well with the experimental results obtained using the coupling-probe scheme with orthogonal linear polarizations of the coupling and probe fields. The mechanisms of electromagnetically induced absorption (electromagnetically induced transparency) for the open Fg = 3 → Fe = 2 and 3 transitions (open Fg = 2 → Fe = 2 and 3 transitions) are clearly determined to be the effect of the strong closed Fg = 3 → Fe = 4 transition line (strong closed Fg = 2 → Fe = 1 transition line) based on the comparisons of the calculated absorption profiles of a DTLS without neighboring states and those of all levels with neighboring states depending on the coupling and probe power ratios. The crucial factors established based on comparisons of the calculated absorption profiles of DTLS with and without neighboring states, which enhance or reduce coherence effects and result in transformation between electromagnetically induced absorption and electromagnetically induced transparency, are the power ratios between coupling and probe beams, openness of the excited state, and effects of the neighboring states due to the Doppler broadening in a real atomic system.


2020 ◽  
Vol 760 ◽  
pp. 138000
Author(s):  
J.L. Paz ◽  
Fernando Moncada ◽  
Eleana Ruiz-Hinojosa ◽  
Y.J. Alvarado ◽  
Luis Lascano ◽  
...  

2020 ◽  
Vol 22 (10) ◽  
pp. 103039 ◽  
Author(s):  
Cyril Elouard ◽  
David Herrera-Martí ◽  
Massimiliano Esposito ◽  
Alexia Auffèves

2020 ◽  
Vol 53 (44) ◽  
pp. 445201
Author(s):  
Jelena Dimitrijević ◽  
Dušan Arsenović ◽  
Branislav M Jelenković

2020 ◽  
Vol 34 (18) ◽  
pp. 2050158
Author(s):  
Heung-Ryoul Noh

In this paper, we present analytical solutions to the Bloch equations. After solving the secular equation for the eigenvalues, derived from the Bloch equations, analytical solutions for the temporal evolution of the magnetization vector are obtained at arbitrary initial conditions. Subsequently, explicit analytical expressions of the propagator for the Bloch equations and optical Bloch equations are obtained. Compared to the results of existing analytical studies, the present results are more succinct and rigorous, and they can predict the behavior of the propagator in different regions of parameter spaces. The analytical solutions to the propagator can be directly used in composite laser-pulse spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document