semisimple hopf algebra
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
E Kirkman ◽  
J J Zhang

Abstract We study finite-dimensional semisimple Hopf algebra actions on noetherian connected graded Artin–Schelter regular algebras and introduce definitions of the Jacobian, the reflection arrangement, and the discriminant in a noncommutative setting.


Author(s):  
SONIA NATALE ◽  

Abstract We study exact sequences of finite tensor categories of the form Rep G → 𝒞 → 𝒟, where G is a finite group. We show that, under suitable assumptions, there exists a group Γ and mutual actions by permutations ⊳ : Γ × G → G and ⊲ : Γ × G→ Γ that make (G, Γ) into matched pair of groups endowed with a natural crossed action on 𝒟 such that 𝒞 is equivalent to a certain associated crossed extension 𝒟(G,Γ) of 𝒟. Dually, we show that an exact sequence of finite tensor categories Vec G → 𝒞 → 𝒟 induces an Aut(G)-grading on 𝒞 whose neutral homogeneous component is a (Z(G), Γ)-crossed extension of a tensor subcategory of 𝒟. As an application we prove that such extensions 𝒞 of 𝒟 are weakly group-theoretical fusion categories if and only if 𝒟 is a weakly group-theoretical fusion category. In particular, we conclude that every semisolvable semisimple Hopf algebra is weakly group-theoretical.


2018 ◽  
Vol 25 (01) ◽  
pp. 1-30
Author(s):  
Rafael Cavalheiro ◽  
Alveri Sant’Ana

In this paper we discuss about the semiprimitivity and the semiprimality of partial smash products. Let H be a semisimple Hopf algebra over a field 𝕜 and let A be a left partial H-module algebra. We study the H-prime and the H-Jacobson radicals of A and their relations with the prime and the Jacobson radicals of A#H, respectively. In particular, we prove that if A is H-semiprimitive, then A#H is semiprimitive provided that all irreducible representations of A are finite-dimensional, or A is an affine PI-algebra over 𝕜 and 𝕜 is a perfect field, or A is locally finite. Moreover, we prove that A#H is semiprime provided that A is an H-semiprime PI-algebra, generalizing to the setting of partial actions the known results for global actions of Hopf algebras.


2015 ◽  
Vol 65 (1) ◽  
Author(s):  
Jingcheng Dong ◽  
Li Dai

AbstractLet q be a prime number, k an algebraically closed field of characteristic 0, and H a non-trivial semisimple Hopf algebra of dimension 2q


2014 ◽  
Vol 57 (2) ◽  
pp. 264-269
Author(s):  
Li Dai ◽  
Jingcheng Dong

AbstractLet p, q be prime numbers with p2 < q, n ∊ ℕ, and H a semisimple Hopf algebra of dimension pqn over an algebraically closed field of characteristic 0. This paper proves that H must possess one of the following two structures: (1) H is semisolvable; (2) H is a Radford biproduct R#kG, where kG is the group algebra of group G of order p and R is a semisimple Yetter–Drinfeld Hopf algebra in of dimension qn.


2013 ◽  
Vol 13 (03) ◽  
pp. 1350118 ◽  
Author(s):  
DINGGUO WANG ◽  
YUANYUAN KE

Let H be a finite-dimensional cocommutative semisimple Hopf algebra and A * H a twisted smash product. The Calabi–Yau (CY) property of twisted smash product is discussed. It is shown that if A is a CY algebra of dimension dA, a necessary and sufficient condition for A * H to be a CY Hopf algebra is given.


2013 ◽  
Vol 11 (11) ◽  
Author(s):  
Sebastian Burciu

AbstractA description of the commutator of a normal subcategory of the fusion category of representation Rep A of a semisimple Hopf algebra A is given. Formulae for the kernels of representations of Drinfeld doubles D(G) of finite groups G are presented. It is shown that all these kernels are normal Hopf subalgebras.


Sign in / Sign up

Export Citation Format

Share Document