perfect field
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 21)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 118 (49) ◽  
pp. e2113201118
Author(s):  
Bjorn Poonen ◽  
Sergey Rybakov

Refining a theorem of Zarhin, we prove that, given a g-dimensional abelian variety X and an endomorphism u of X, there exists a matrix A∈M2g(ℤ) such that each Tate module TℓX has a ℤℓ-basis on which the action of u is given by A, and similarly for the covariant Dieudonné module if over a perfect field of characteristic p.


2021 ◽  
Vol Volume 5 ◽  
Author(s):  
Julia Schneider ◽  
Susanna Zimmermann

We show that any infinite algebraic subgroup of the plane Cremona group over a perfect field is contained in a maximal algebraic subgroup of the plane Cremona group. We classify the maximal groups, and their subgroups of rational points, up to conjugacy by a birational map.


Author(s):  
Quentin Guignard

Abstract We prove a product formula for the determinant of the cohomology of an étale sheaf with $\ell $ -adic coefficients over an arbitrary proper scheme over a perfect field of positive characteristic p distinct from $\ell $ . The local contributions are constructed by iterating vanishing cycle functors as well as certain exact additive functors that can be considered as linearised versions of Artin conductors and local $\varepsilon $ -factors. We provide several applications of our higher dimensional product formula, such as twist formulas for global $\varepsilon $ -factors.


Author(s):  
Zsolt Patakfalvi ◽  
Maciej Zdanowicz

AbstractWe prove that smooth, projective, K-trivial, weakly ordinary varieties over a perfect field of characteristic $$p>0$$ p > 0 are not geometrically uniruled. We also show a singular version of our theorem, which is sharp in multiple aspects. Our work, together with Langer’s results, implies that varieties of the above type have strongly semistable tangent bundles with respect to every polarization.


2021 ◽  
pp. 1-5
Author(s):  
V. V. BAVULA

Abstract Let K be a field of arbitrary characteristic, $${\cal A}$$ be a commutative K-algebra which is a domain of essentially finite type (e.g., the algebra of functions on an irreducible affine algebraic variety), $${a_r}$$ be its Jacobian ideal, and $${\cal D}\left( {\cal A} \right)$$ be the algebra of differential operators on the algebra $${\cal A}$$ . The aim of the paper is to give a simplicity criterion for the algebra $${\cal D}\left( {\cal A} \right)$$ : the algebra $${\cal D}\left( {\cal A} \right)$$ is simple iff $${\cal D}\left( {\cal A} \right)a_r^i{\cal D}\left( {\cal A} \right) = {\cal D}\left( {\cal A} \right)$$ for all i ≥ 1 provided the field K is a perfect field. Furthermore, a simplicity criterion is given for the algebra $${\cal D}\left( R \right)$$ of differential operators on an arbitrary commutative algebra R over an arbitrary field. This gives an answer to an old question to find a simplicity criterion for algebras of differential operators.


2021 ◽  
Vol 157 (3) ◽  
pp. 641-648
Author(s):  
Ana J. Reguera

The purpose of this note is to correct a mistake in the article “A curve selection lemma in spaces of arcs and the image of the Nash map” Compositio Math. 142 (2006), 119–130. It is due to an overlooked hypothesis in the definition of generically stable subset of the space of arcs X∞ of a variety X defined over a perfect field k.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shubhodip Mondal

Abstract We prove that if G is a finite flat group scheme of p-power rank over a perfect field of characteristic p, then the second crystalline cohomology of its classifying stack $H^2_{\text {crys}}(BG)$ recovers the Dieudonné module of G. We also provide a calculation of the crystalline cohomology of the classifying stack of an abelian variety. We use this to prove that the crystalline cohomology of the classifying stack of a p-divisible group is a symmetric algebra (in degree $2$ ) on its Dieudonné module. We also prove mixed-characteristic analogues of some of these results using prismatic cohomology.


Author(s):  
Bruno Laurent

Abstract We classify almost homogeneous normal varieties of Albanese codimension $1$, defined over an arbitrary field. We prove that such a variety has a unique normal equivariant completion. Over a perfect field, the group scheme of automorphisms of this completion is smooth, except in one case in characteristic $2$, and we determine its (reduced) neutral component.


In Newtonian mechanics, space and time are separate but in General, Relativity is unified. It is considered that the space in the weak-field approximation is quasi-static and it arises from a perfect field whose particles have very small velocity in comparison to light velocity in this coordinate system and the metric is a gravitational potential tensor of rank two which implies the field of empty space. If each point of an area in N-dimensional space there existed a corresponding definite tensor, where the components of the tensor are the function of space and space acts as the strong or weak gravitational field.


Sign in / Sign up

Export Citation Format

Share Document