forecasting volatility
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 48)

H-INDEX

27
(FIVE YEARS 3)

Forecasting ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 920-933
Author(s):  
Kejin Wu ◽  
Sayar Karmakar

Forecasting volatility from econometric datasets is a crucial task in finance. To acquire meaningful volatility predictions, various methods were built upon GARCH-type models, but these classical techniques suffer from instability of short and volatile data. Recently, a novel existing normalizing and variance-stabilizing (NoVaS) method for predicting squared log-returns of financial data was proposed. This model-free method has been shown to possess more accurate and stable prediction performance than GARCH-type methods. However, whether this method can sustain this high performance for long-term prediction is still in doubt. In this article, we firstly explore the robustness of the existing NoVaS method for long-term time-aggregated predictions. Then, we develop a more parsimonious variant of the existing method. With systematic justification and extensive data analysis, our new method shows better performance than current NoVaS and standard GARCH(1,1) methods on both short- and long-term time-aggregated predictions. The success of our new method is remarkable since efficient predictions with short and volatile data always carry great importance. Additionally, this article opens potential avenues where one can design a model-free prediction structure to meet specific needs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260289
Author(s):  
Shusheng Ding ◽  
Tianxiang Cui ◽  
Yongmin Zhang ◽  
Jiawei Li

Fin-tech is an emerging field, inspiring revolutionary innovations in the financial field. It may initiate the evolutionary episode of the financial research, where volatility forecasting is a crucial topic in finance. For forecasting volatility, GARCH model is a prevailing model, however, further improvement of the GARCH model is still challenging. In this paper, we demonstrate how Fintech can play a part in volatility forecasting by employing a metaheuristic procedure called Genetic Programming. On the basis, we are able to develop a new volatility forecasting model, which can beat GARCH family models (including GARCH, IGARCH and TGARCH models) in a significant way. Since genetic programming is an evolutionary algorithm based on the principles of natural selection, this innovative work will be a breakthrough point in the financial area. The innovation of this paper demonstrates how GP technology can be applied in the financial field, attempting to explore the volatility forecasting area from the combination of new technology and finance, known as fintech. More importantly, when the formula of volatility forecasting is unknown as we introduce a new factor, namely, the liquidity factor, we unveil that how GP method can be helpful in determining the specific volatility forecasting model format. We thereby exhibit the liquidity effects on volatility forecasting filed from the fintech perspective.


Author(s):  
Lykke Øverland Bergsli ◽  
Andrea Falk Lind ◽  
Peter Molnár ◽  
Michal Polasik

2021 ◽  
Vol 3 (1) ◽  
pp. 78-93
Author(s):  
Yunusa Adavi Ojirobe ◽  
Abdulsalam Hussein Ahmad ◽  
Ikwuoche John David

Modeling price volatility of crude oil (PVCO) is pertinent because of the overbearing impact on any oil-producing economy. This study aimed at evaluating the performance of some volatility models in modeling and forecasting crude oil returns. Utilizing daily returns data from October 23, 2009, to March 23, 2020, this study attempted to capture the dynamics of crude oil price volatility in Nigeria using a symmetric and asymmetric GARCH models. In our research, we considered the generalized autoregressive conditional heteroscedastic model (GARCH), Exponential (E-GARCH), Glosten, Jagannathan and Runkle (GJR-GARCH) and Asymmetric Power (AP-ARCH) under six error innovations that include the skewed variant of the student-t, generalized error and normal distribution. From the results obtained, it was discovered that the AP-ARCH (1, 1) model performed better in the fitting and performance evaluation phase. The skew Student’s t-distribution (SStD) was also reported to be the best performing error innovation in most of the models. Based upon these results, we conclude that the AP-ARCH (1, 1)-SStD model is the best model for capturing the dynamics of crude oil returns in Nigeria.


2021 ◽  
Vol 62 ◽  
pp. 46-61
Author(s):  
Mingmian Cheng ◽  
Norman R. Swanson ◽  
Xiye Yang

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Gunho Jung ◽  
Sun-Yong Choi

Since the breakdown of the Bretton Woods system in the early 1970s, the foreign exchange (FX) market has become an important focus of both academic and practical research. There are many reasons why FX is important, but one of most important aspects is the determination of foreign investment values. Therefore, FX serves as the backbone of international investments and global trading. Additionally, because fluctuations in FX affect the value of imported and exported goods and services, such fluctuations have an important impact on the economic competitiveness of multinational corporations and countries. Therefore, the volatility of FX rates is a major concern for scholars and practitioners. Forecasting FX volatility is a crucial financial problem that is attracting significant attention based on its diverse implications. Recently, various deep learning models based on artificial neural networks (ANNs) have been widely employed in finance and economics, particularly for forecasting volatility. The main goal of this study was to predict FX volatility effectively using ANN models. To this end, we propose a hybrid model that combines the long short-term memory (LSTM) and autoencoder models. These deep learning models are known to perform well in time-series prediction for forecasting FX volatility. Therefore, we expect that our approach will be suitable for FX volatility prediction because it combines the merits of these two models. Methodologically, we employ the Foreign Exchange Volatility Index (FXVIX) as a measure of FX volatility. In particular, the three major FXVIX indices (EUVIX, BPVIX, and JYVIX) from 2010 to 2019 are considered, and we predict future prices using the proposed hybrid model. Our hybrid model utilizes an LSTM model as an encoder and decoder inside an autoencoder network. Additionally, we investigate FXVIX indices through subperiod analysis to examine how the proposed model’s forecasting performance is influenced by data distributions and outliers. Based on the empirical results, we can conclude that the proposed hybrid method, which we call the autoencoder-LSTM model, outperforms the traditional LSTM method. Additionally, the ability to learn the magnitude of data spread and singularities determines the accuracy of predictions made using deep learning models. In summary, this study established that FX volatility can be accurately predicted using a combination of deep learning models. Our findings have important implications for practitioners. Because forecasting volatility is an essential task for financial decision-making, this study will enable traders and policymakers to hedge or invest efficiently and make policy decisions based on volatility forecasting.


Sign in / Sign up

Export Citation Format

Share Document